It is instructive to work up to this "one dimension at a time." For simplicity we will stick to using as the symbol for the function of which we are taking derivatives.
The GRADIENT in One Dimension
Let the dimension be x. Then we have no "extra" variables
to hold constant and the gradient of
is nothing
but
.
We can illustrate the "meaning"
of
by an example: let
be the mass of an
object times the acceleration of gravity times the height h of
a hill at horizontal position x. That is,
is the
gravitational potential energy of the object when it is
at horizontal position x. Then
The GRADIENT in Two Dimensions
In the previous example we disregarded the fact that most hills
extend in two horizontal directions, say x = East
and y = North. [If we stick to small distances we won't notice
the curvature of the Earth's surface.]
In this case there are two components to the slope:
the Eastward slope
and the Northward slope
.
The former is a measure of how steep the hill will seem
if you head due East and the latter is a measure of how steep
it will seem if you head due North. If you put these together
to form a vector "steepness" (gradient)
The GRADIENT in Three Dimensions
If the potential is a function of 3 variables, [such as the three spatial coordinates x, y and z - in which case we can write it a little more compactly as where , the vector distance from the origin of our coordinate system to the point in space where is being evaluated], then it is a little more difficult to make up a "hill" analogy -- try imagining a topographical map in the form of a 3-dimensional hologram where instead of lines of constant altitude the "equipotentials" are surfaces of constant . (This is just what Physicists do picture!) Fortunately the math extends easily to 3 dimensions (or any larger number, if that has any meaning in the context we choose).
In general, any time there is a potential energy
function
we can immediately write down the
force
associated with it as
The GRADIENT in N Dimensions
Although we won't be needing to go beyond 3 dimensions very often in Physics, you might want to borrow this metaphor for application in other realms of human endeavour where there are more than 3 variables of which your scalar field is a function. You could have be a measure of happiness, for instance [though it is hard to take reliable measurements on such a subjective quantity]; then might be a function of lots of factors, such as x1 = freedom from violence, x2 = freedom from hunger, x3 = freedom from poverty, x4 = freedom from oppression, and so on.3 Note that with an arbitrary number of variables we get away from thinking up different names for each one and just call the variable "xi."
Then we can define the GRADIENT in N dimensions as