

"Themes" in μ^+ SR

The Muon as a Probe

- Magnetic Penetration Depth \lambda

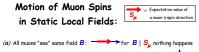
Muonium as light Hydrogen (Mi

• Mu vs. H atom Chemistry: - gases, liquids & solids	Probing Magnetism: unequaled sensitivity Local fields: electronic structure; ordering Dynamics: electronic structure; ordering
- Best test of reaction rate theories.	- Dynamics: electronic, nuclear spins

- Study "unobservable" H atom rxns.

• Probing Superconductivity: (esp. HT_cSC) - Discover new radical species, - Coexistence of SC & Magnetism

• Mu vs. H in Semiconductors: - Until recently, $\mu^*SR \rightarrow only$ data on - Coherence Length ξ

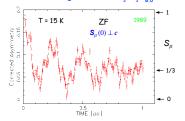

metastable H states in semiconductors!

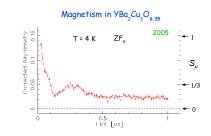
Quantum Diffusion: µ⁺ in metals (compare H⁺): Mu in nonmetals (compare H).

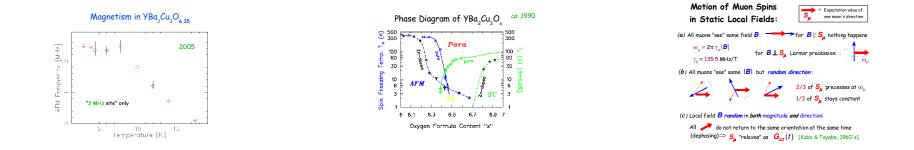
µSR Toolbox for Quantum Materials

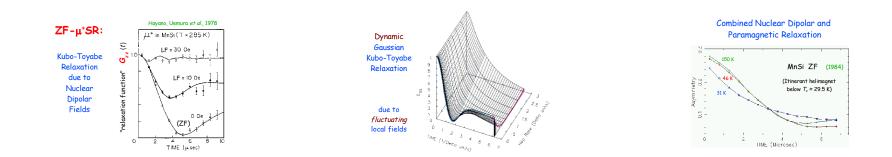
• ZF-µSR & Static Local Magnetic Fields:

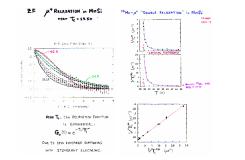
- * Volume fraction of AF/SG order even in powder samples
- * Sensitive to very weak fields (~1G)
- * T-dependence of $B_{loc} \Rightarrow$ magnetic phase diagram
- TF-µSR & Vortex Lattice:
- * Penetration depth $\lambda(T,H) \Rightarrow SC$ phase diagram
- Coherence length ξ(T,H)
- Pinning, melting etc.

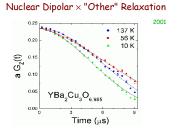


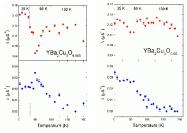

(b) All muons "see" same |B| but random direction

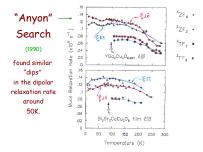


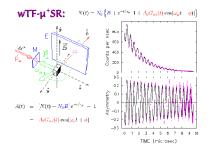

Antiferromagnetism in YBa₂Cu₃O_{6.0}

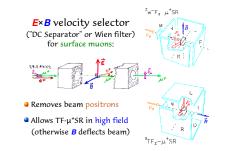


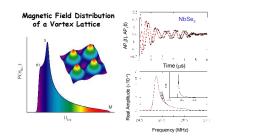

Antiferromagnetism in YBa₂Cu₃O_{6.0} 1989 GE Oriented $\Upsilon Ba_2 Cu_3 O_{80}$ ZF (c \pm P_) 312 - 6 Two muon sites: 58e 1 8 an 2 20 2 20 204 m. most at Site 1 ("4 MHz site"), Field [G] at Nuo 'S MARE NO REN'S less at Site 2 ("18 MHz site"). -<u>×</u> Changes at 10K and 80K, cause S'.c 2 L 911 0 912 12.4 -12.4 unknown. 50 100 '50 200 50 150 -20 200 Temperature (K) Temperature (K)

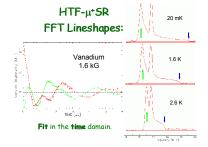


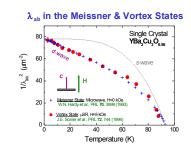


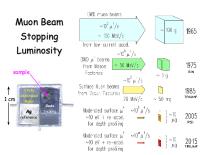





Nuclear Dipolar × "Other" Relaxation 2002







The End

