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Abstract

This thesis describes uSR experiments which focus on systems where the magnetic ions
occupy the vertices of edge or corner sharing triangular units, in particular the pyrochlores
A,B507. The scientific interest in pyrochlores is based on the fact that they display novel
magnetic behaviour at low temperatures due to geometrical frustration. The ground state
of these systems is sensitively dependent on such factors as the range of the spin-spin
interactions, disorder, anisotropy, thermal and quantum fluctuations.

For example, Y,Mo,O7 shows many features reminiscent of a conventional spin glass,
even though this material has nominally zero chemical disorder. It is found that the
muon spin polarisation obeys a time-field scaling relation which indicates that the spin-
spin autocorrelation function has a power law form in time, in stark contrast with the
exponential form often assumed for conventional magnets above their transition temper-
ature.

Gd,TioO; shows long range order, but only at a temperature much lower than its
Curie-Weiss temperature, a signature of a frustrated system. In the paramagnetic regime,
it is well described by an isotropic Heisenberg Hamiltonian with nearest neighbour cou-
plings in the presence of a Zeeman interaction, from which the spin-spin autocorrelation
function may be calculated as a power series in time. The muon spin relaxation rate de-
creases with magnetic field as the Zeeman energy becomes comparable with the exchange
coupling between Gd spins. Thus, an independent measure of the exchange coupling or
equivalently the Gd spin fluctuation rate is extracted.

By contrast, TbyTisO7 has been identified as a type of cooperative paramagnet. Short
range correlations develop below 50 K. However, there is no long range ordering down to

very low temperatures (0.075 K). The Tb** ion is subject to strong crystal electric field



effects: point charge calculations indicate that this system is Ising like at low tempera-
tures. Thus this system may be analogous to water ice, a system theoretically predicted
to have finite entropy at zero temperature. It is possible to qualitatively explain the
unusual changes in 77! as a function of applied magnetic field which are also observed
using uSR.
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Chapter 1

Introduction

Recently there has been a great deal of scientific interest in systems where the magnetic
ions occupy the vertices of edge or corner sharing triangular units [1]. In these cases the
natural magnetic coupling between ions is geometrically frustrated, while the translational
symmetry of the lattice is preserved. The curiosity about these systems stems from the
possibility that if conventional magnetic order is highly frustrated then one may find
novel forms of magnetism. There is now considerable evidence that the low temperature
state is “fragile”, i.e. it depends sensitively on a variety of factors such as anisotropy [2],
the range of the spin-spin interactions 3, 4], thermal [5] and quantum [6, 7, 8] fluctuations
and residual disorder.

It is important to distinguish between frustration arising from disorder and that due
to the geometry or topology of the crystal structure. To illustrate this difference consider
a plaquette of four Ising spins with random interactions favouring either parallel (+) or
antiparallel (—) alignment, as shown in figures 1.1a and 1.1b. Note that for a plaquette
with an even number of (—) interactions (1.1a) there exists a spin configuration which
satisfies all the antiferromagnetic couplings between ions. On the other hand, when there
happens to be an odd number of (—) couplings on the plaquette (see 1.1b) no spin con-
figuration satisfies all four couplings and the plaquette is said to be frustrated. Similarly,
a square lattice of spins with random nearest neighbour interactions is frustrated by dis-
order. Generally, frustration from random disorder is thought to be responsible for the
observed magnetic behaviour in conventional spin glasses, which is characterised by finite
local spontaneous magnetisation but with an average or staggered magnetisation which is
zero. An example of a conventional spin glass would be a metal in which a dilute concen-

tration of magnetic ions are distributed randomly: e.g. AuFe, CuMn or AgMn, although

1
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Figure 1.1: a) Unfrustrated and b) frustrated plaquettes due to random interactions. c)
Geometrically frustrated plaquette of spins.



Chapter 1. Introduction 3

insulating spin glasses have also been observed. The ions in the metallic systems interact
primarily through the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction arising from
polarisation of the host conduction electrons. Since the RKKY interaction is oscillatory
in nature and the distance between ions is somewhat variable, the magnetic coupling
between ions is random both in magnitude and sign. It is observed that the spins freeze
below a critical temperature T, leading to random but static order of the spin orienta-
tions, i.e. a spin glass state as T — 0. A complete discussion of random spin glasses
is beyond the scope of this thesis. More details can be found in the review article by
Binder and Young [9] and a recent book by Fischer and Hertz [10]. While this thesis
concentrates on frustrated systems with nominally zero chemical disorder, many of them
nevertheless show features reminiscent of conventional spin glasses. Some of the ideas
developed for spin glass materials are relevant for geometrically frustrated systems.

Now consider the plaquette shown in 1.1c, where all the interactions between spins
favour antiparallel alignment. In this case there is no bond disorder and yet it is still
frustrated, since there is no spin configuration which simultaneously satisfies all three of
the antiferromagnetic couplings. In systems where the magnetic ions occupy the vertices
of edge or corner sharing triangular units, the natural antiferromagnetic coupling between
ions is said to be geometrically frustrated. The key point here is that there is a high degree
of magnetic frustration while preserving the translational symmetry of the lattice.

Edge sharing triangles and tetrahedra form the well known stacked triangular [11] and
face centred cubic lattices in two and three dimensions respectively. In two dimensions, a
network of corner sharing triangles forms the kagomé lattice, while in three dimensions a
lattice of corner sharing triangles gives rise to the garnets. There are a variety of systems
which are based on a three dimensional arrangement of corner sharing tetrahedra. For
instance, the intermetallic Laves phase compounds have a general formula AB, [12, 13],
where A is a rare earth and B is a transition ion. Spinels of general formula AB,O,4 or
A.B,0, [14, 15, 16, 17, 18, 19] constitute a second family. A third one is comprised of
fiuoride pyrochlores with general formula AB%+C3+F [20, 21] (A is an alkali metal, B and
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C are transition metals). Finally, there is the family of oxide pyrochlores with the general
formula A;B2O7 (A is a rare earth and B is a transition jon). Strictly speaking, the only
candidates which can be described by a localised uniform Heisenberg model are the oxide
pyrochlores. These systems are well ordered with a uniform distribution of magnetically
localised ions. By contrast, the second and third sets often possess positional or chemical
disorder, while the first is better described within an itinerant model. Hence the oxide
pyrochlores are perhaps the most promising systems in which to isolate the effects of
geometric frustration on the low temperature behaviour of magnets. These compounds
are the subject of the majority of the experiments described in this thesis. Chapter 3
includes details of their structure and synthesis, as well as the effect of the surrounding
ligands on the energy levels of the magnetic ions. There is also a discussion of possible
muon sites within this family of compounds.

Whenever a muon stops in an insulator there are always free carriers (and the ac-
companying positive ions) produced. The possible effect of these radiolysis products is
discussed in Chapter 6. Muon spin relaxation measurements on a non-magnetic insu-
lating pyrochlore Y,TiyO7 are presented with the intention of quantifying any influence
of muonium formation in the magnetic pyrochlores. The possibility of “muon induced”
effects by the interstitial p* charge or spin are also discussed. The muon itself is usu-
ally assumed to be an innocuous probe. This premise is demonstrated by comparisons
with the results other techniques. In particular, the Tb3+ spin fluctuation rates in the
pyrochlore TboMo,O+ extracted from neutron scattering and uSR measurements are in
good agreement [22]. The same is true for YoMo,O7, as illustrated in Chapter 6.

In conventional magnets spontaneous symmetry breaking at a phase transition leads
to a uniquely defined ground state (e.g. the Néel state in the case of an antiferromagnet).
Typically, in heavily frustrated systems one can expect a large macroscopic ground state
degeneracy [23]. Theoretical predictions of the ground state of geometrically frustrated
pyrochlores are discussed in Chapter 2 of this thesis. As mentioned above, the ground

state of these systems depends on all the interactions in an extremely sensitive way.
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Omitting terms which might be considered negligible in conventional magnets from the-
oretical models of frustrated systems may explain the discrepancies which arise between
theory and experiment. The dominant experimental feature which characterises frustra-
tion is that if there is a phase transition, it is at a temperature well below that predicted
for unfrustrated systems with the same exchange coupling, J. Note however that this
behaviour is distinct from truly one dimensional systems, where no ordering is predicted.
A variety of experimental methods have been used to characterise the magnetic proper-
ties of frustrated spin systems. Muon Spin Relaxation/Rotation/Resonance (uSR) has
been shown to be particularly effective at elucidating spin dynamics which occur over a
broad range of frequencies between 10 — 101! 57!, too low for neutron scattering but too
high for ac susceptibility. Chapter 4 describes this technique, as well as some develop-
ments in the equipment used over the course the experiments. The formalism necessary
to understand muon spin depolarisation or relaxation is introduced in Chapter 5.

The methods being used to investigate geometricall; frustrated magnets with muons
have also been used to investigate conventional spin glasses. The first uSR experiments
on dilute metallic spin glasses were performed in the mid seventies. The earliest were
transverse field (TF) uSR measurements [24] where the damping or linewidth parameter
(T5!) was observed to increase as one approaches Tr from above, due to the critical
slowing down of spin fluctuations. Subsequently, zero field (ZF) uSR and longitudinal
field (LF) uSR techniques, which allow one to distinguish the static and fluctuating
components of the internal field more easily, have been particularly useful in random
spin systems where it is often very difficult to carry out NMR measurements under
similar conditions.

One of the most significant contributions which uSR has made to the understand-
ing of spin glasses has to do with the nature of the spin fluctuations. ZF and LF uSR
measurements on AuFe and CuMn [25] show the simultaneous presence of static random
field components and rapidly fluctuating components. This provides strong confirma-
tion of the Edwards-Anderson model of spin glasses, where each impurity spin has its
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own preferred direction and undergoes restricted fluctuations about this direction. This
technique also played an important role in understanding the spin-spin autocorrelation
function in spin glasses. It had previously been thought that the spin dynamics could
be characterised by a single correlation time. Neutron spin echo [26] and later uSR
measurements [27, 28, 29] suggested exotic dynamics both above and below the spin
freezing transition Tr, implying dynamics on many timescales. Even more surprisingly,
as the spin freezing temperature is approached from above, it is found that the muon
spin polarisation obeys a time-field scaling relation which indicates that the spin-spin
autocorrelation function has a power law form in time [30]. This is in stark contrast with
the exponential form often assumed for conventional paramagnets.

As a comparison, consider the autocorrelation functions in a two sublattice antiferro-
magnet. Below the Néel temperature there are collective spin excitations, or magnons,
which may be scattered by the muon spins, emitted or absorbed by them or converted
into phonons, all leading to fluctuating magnetic fields and hence relaxation processes.
The fluctuations of the electronic spins may be expressed using the Holstein-Primakoff
representation of spin operators in terms of Bose creation and annihilation operators of
spin waves. Linear terms with respect to these operators give rise to muon spin transi-
tions accompanied by the absorption or emission of one spin wave. This is called a direct
process; only those spin waves of an energy which corresponds exactly to the muon Lar-
mor frequency can take part in these processes. The dominant effect therefore comes
from Raman processes, which are related to bilinear terms with respect to the creation
and annihilation operators. In a Raman process a muon spin flip is accompanied by a
simultaneous emission of one spin wave and absorption of another, while the total energy
is conserved.

The spin fluctuations §S° at site { are linear in the spin wave creation and annihilation
operators and therefore contribute to direct processes, to lowest order. However, 85, is
bilinear and can induce Raman processes, provided that the direction of antiferromagnetic

alignment +z is not parallel with the initial direction of muon spin, remembering that
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only components of the fluctuating local field transverse to the muon spin quantisation
are effective in causing relaxation. The autocorrelation functions in the non-interacting
spin-wave approximation are discussed by Lovesey [31] and by Moriya {32, 33]. In zero
applied magnetic field:

(S¥57(1)) %:{mq + 1) exp(iwgt) + (nq) exp(—iwgt)} (1.1)

and

(S.5.(8)) o §§{<naq><naqr+ 1) expli(wg — wep)t] +
(nog + 1){ngqp) exp[—i(wg — wer)t]} (12)

where (n.q) and (nﬂq:) are the thermal averages of the number operators of magnons
of wave-vector ¢ and q’ on each sublattice. The magnons are governed by Bose-Einstein

statistics and hence
(ng) = {exp(fuwg/ksT) — 1} (13)

Finally, the autocorrelation functions are a superposition of oscillatory functions at fre-
quencies wq, given by the spin wave dispersion relations, such that, overall, the oscillation
becomes damped.

SrCr.Gajs—019 (SCGO) is the most well studied example of a Heisenberg antifer-
romagnet on a kagomé lattice. A spin glass-like cusp is observed at Tp ~2-5 K as well
as history dependence of the susceptibility, similar to that seen in random spin glasses.
This material has recently been studied by Uemura et al. [34] using uSR. Surprisingly,
dynamic spin fluctuations are observed without any evidence for static internal fields even
at 100 mK. Neutron scattering measurements by Lee et al. [35], which imply an ordered
moment only one third of the full value for S=3/2 Cr3* ions, support the idea of only a
partial ordering with significant residual spin dynamics. However, possible complications
arise in investigating this material, as there are alternating kagomé lattice and triangular
lattice planes and (9 — z)/9 of the Cr sites are randomly substituted by nonmagnetic Ga
atoms. So far it has not been possible to synthesise SCGO without appreciable chemical
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disorder. Jarosites AFe3(OH)s(SO4)2 [36] are more perfect realisations of an antiferro-
magnetic kagomé lattice. However, these materials have been less extensively studied,
mainly due to difficulties in synthesis [37]. Typically the occupation of Fe3* sites is in
the range of 83-94%, once again introducing some randomness.

A remarkable feature of many geometrically frustrated systems is the suppression of
long range magnetic ordering and in some cases a high sensitivity to the presence of an
external magnetic field. Gadolinium gallium garnet has perhaps the best known example
of a field induced phase transition. Specific heat and magnetic susceptibility in zero field
indicate there is no long-range magnetic ordering down to at least T = 0.14 K, which is
more than an order of magnitude below the Curie Weiss temperature of Ocw ~ —2 K
(Ref. [38]), though a spin glass transition, controlled by the amount of site disorder from
Gd on Ga sites, has been reported. Similar measurements on a [100] needlelike single
crystal have shown that the application of an external field between 0.6 and 1.4 T can
induce long range AF order [39]. Recently, neutron diffraction measurements [40] have
found that short range magnetic ordering can occur at temperatures as high as 5 K and
that spatial correlations of up to ~ 100 A can exist below 140 mK. The low temperature
spin dynamics have been investigated using muon spin relaxation [41]. Surprisingly, no
evidence for static order is seen down to a temperature of 25 mK or a few percent of the
Curie Weiss temperature. Instead there is a linear decrease in the Gd spin fluctuation rate
below 1 K which extrapolates to a small but finite value of 2 GHz at zero temperature.
In terms of the spin fluctuations the system appears essentially to remain dynamic at
low temperatures (T > 0.02 K) and in magnetic fields up to 1.8 T.

A wide variety of low temperature behaviour has been observed in the geometrically
frustrated pyrochlores of general formula A,B>O7. As described in Chapter 6, the py-
rochlore YoMo,O7 exhibits a type of spin freezing at a temperature T which is similar
to that seen in conventional spin glasses. Experiments on a conventional spin glass AuFe
are included in this chapter to allow direct comparison. The magnetic Mo ions were also

intentionally diluted with non-magnetic Ti*" ions to study the effect of random disorder
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in a controlled manner.

Muon spin relaxation measurements on GdyTi;O; are described in Chapter 7. While
specific heat and susceptibility measurements by others indicate that this compound does
show long range order, albeit at a temperature much less than its Curie Weiss tempera-
ture, our experiments have concentrated on the behaviour of 77! at higher temperatures
and fields. The Gd®* ion has a 8S7, ground state and hence to first order is not subject
to crystal field effects, which depend on the orbital contribution to the angular momen-
tum of the ion in question. This system is therefore perhaps the closest real example of a
geometrically frustrated system with Heisenberg spins. Short range spin-spin correlations
develop as the temperature is reduced and their effect on the muon spin relaxation rate
is observed.

Chapter 8 involves a discussion of TbyTisO7 which includes both uSR and neutron
scattering measurements. A rich variety of behaviour is observed as a function of temper-
ature and magnetic field. To fully understand this material is more difficult, as crystal
electric field effects, exchange and dipolar interactions are all significant. This material
perhaps best highlights the need to develop more sophisticated theoretical models de-
scribing the dynamics of systems of electronic moments specifically relevant to muon spin
relaxation functions.

As outlined above, a wide variety of magnetic ground states are possible in geomet-
rically frustrated spin systems. Pyrochlores are particularly interesting since they are
three dimensional structures and can be made with little disorder. Perhaps the most un-
expected feature in pyrochlores discovered so far is the persistent spin relaxation at the
lowest temperatures, indicating a large density of magnetic excitations near zero energy.
Most other geometrically frustrated spin systems also show evidence for these persistent

spin fluctuations.
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Figure 1.2: Pyrochlore lattice of corner sharing tetrahedra. The magnetic moments
occupy the corners of the tetrahedra.



Chapter 2

Theory of Geometric Frustration on the Pyrochlore Lattice

The Heisenberg Hamiltonian is the starting point of many investigations of magnetic

systems. It is written as
H= —% > JikS; - Sk, (2.4)
J#k
where J;» is known as the coupling constant: the vector spin operators S; and S, favour
antiparallel alignment if the coupling is negative. This section includes a brief description
of various theoretical calculations and numerical simulations of spins on a lattice of corner
sharing tetrahedra.

For example, consider the Heisenberg Hamiltonian applied to 4 antiferromagnetically
coupled spin 1/2 ions on the corners of a tetrahedron. Diagonalising H, the eigenstates
of this system can be written as linear combinations of products of single spin states, as
shown in Table 2.1, where the basis states are the projection of S along the [001] axis.
The corresponding energy eigenvalues are given in Table 2.2. In the state | T11l), for
example, the component along the Z or [001] axis of the spin of particles 1 through 4
are respectively +h/2, +k/2, +f/2 and —h/2. However, in some instances single ion
anisotropy means the spins are constrained to lie along the four local (111) axes, such
that the spins point either into or out of the tetrahedron. In this case all sixteen 4-spin
states are mixed together.

As can be seen from Table 2.2, the ground state is determined by the condition

4
> 8;=0. (2.5)

i=1
More generally, given a small finite cluster of p spins all coupled equally to each other
with a coupling J, the reduced energy per spin or E/p|J| for J < 0 can be found by

11
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Table 2.1: Eigenstates of Heisenberg Hamiltonian as linear combinations of initial single
spin up-down states of four spin 1/2 particles.
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Energy

Eigenvalues S Sz

(V4))
-3/2 0 O
-3/2 0 O
-1/2 1 -1
-1/2 1 -1
-1/2 1 -1
-1/2 1 0
-1/2 1 0
-1/2 1 0
-1/2 1 1
-1/2 1 1
-1/2 1 1
3/2 2 -2
3/2 2 -1
3/2 2 0
3/2 2 1
3/2 2 2

Table 2.2: Eigenvalues and associated total spin of a system of 4 antiferromagnetically
coupled spin 1/2 particles.

rewriting Eq. (2.4) as

2
H 1 (&2 12
= - S.| —==%3"82 2.6
a7l 2 (12 ’) 2p,-z=:1 ’ (26)
1 1
= EI;ST(ST -+ 1) - ESJ(SJ -+ 1), (27)

where S; is the spin quantum number at each site and Sr the total spin over the cluster.
If p is even, Sy may take integer values between 0 and pS;. Similarly, for odd values
of p, St ranges from S; to pS;. Again, the lowest energy or ground state arises when
the total spin over the cluster is minimised, i.e. zero for a pyrochlore. Using the rules
for the addition of angular momenta, the ground state degeneracy of the cluster may

be found by counting the number of states with minimum Sr out of a possible number
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of (2S; + 1)*. A highly degenerate ground state is a feature of frustrated magnetic
systems. As demonstrated above, it is straightforward to find the eigenstates of a single
cluster. However, it is more complicated to find the ground state of an entire system
with a macroscopic number of interacting spins. While any state in which all the clusters
have their energy separately minimised is a ground state of the entire system by periodic
repetition, other ground states are also possible, once the interactions between tetrahedra

are included.

2.1 Classical Heisenberg pyrochlore antiferromagnet

The problem of antiferromagnetic ordering on the pyrochlore lattice was first considered
by Anderson [42] in 1956. Calculating the ground state configurational entropy, which is
finite, he predicted that no long range order (LRO) would exist at any temperature for
Ising spins. Later Villain [2] used qualitative arguments to show that the same is true for
a system of Heisenberg spins with nearest neighbour antiferromagnetic interactions. He
coined the expression “cooperative paramagnet” to describe a state with only short range
spin-spin correlations for all T > 0. Both this and the term “classical spin liquid”, which
also appears in the literature, are intended to emphasise that the spins are strongly
interacting but fluctuating as T — 0, rather than frozen into a static configuration.
Anderson [43] discusses an insulating resonating valence bond (rvb) state, appropriate
for some spin 1/2 Heisenberg systems, where the real ground state is a fluid of mobile
valence bonds, i.e. pairs of spins correlated together into singlets. There is an energy
gap to any excited state, by analogy with a Mott insulator. Such a system is referred to
as a “quantum spin liquid”.

Extensive mean field calculations have been performed by Reimers, Berlinsky and
Shi [3] for n-component classical vector spins on the pyrochlore lattice given a Heisenberg

plus Zeeman Hamiltonian. They consider the spin-spin interaction matrix J(q) in terms
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of its Fourier components:
1 .
T?(Irixl) = N Y- T%(q) exp(—iq - Tjt), (2.8)
q

where N is the number of unit cells and a and b are sublattice indices. Expressing the
free energy in terms of a Landau expansion of the order parameter B(7r;), the quadratic
term is given by

%;z@jm - 8;(—a)(nT - X(0)) (29)

Equation (2.9) has been written in terms of the normal modes of the system
B*(q) = }_U;(2)2;(9); (2.10)
j
where U(q) is a unitary matrix which diagonalises J(q) with eigenvalues A\(g):

; J*(@)U;(a) = X;(9)Us ()- (2.11)

By diagonalising the spin-spin interaction matrix using standard numerical packages the
eigenvalues \(q) are obtained. A continuous phase transition occurs at the temperature
where the coefficient of the quadratic term goes to zero. Thus the first ordered state of the
system is associated with the critical modes which have the largest eigenvalue, selecting
out the ordering wave vector. The possible spin structures are expressed in terms of
combinations of normal modes. For the simplest model with only nearest neighbour
antiferromagnetic interactions and only the B site (see Figs. 3.6 and 3.7) magnetic,
three of the four possible modes are degenerate at the Brillouin zone centre, while two
are degenerate and dispersionless right across the zone. Since no point in reciprocal space
is favoured, the conclusion is that long range order cannot exist at any temperature. In
some cases further neighbour interactions will break the degeneracy, stabilising g = 0
or incommensurate structures. More recently Raju et al. [44] have extended Reimers’
calculations to include the effect of dipolar interactions as well. Surprisingly, the long
range and anisotropic nature of the dipolar interaction alone is not sufficient to lift all

macroscopic ground state degeneracies.
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Experimentally, the most extensively studied example of a pyrochlore which does
show evidence of LRO with a g = 0 structure is FeF; [45, 46]. The low temperature
phase consists of four sublattices oriented along the four (111) directions, as indicated
by the systematic absence of magnetic contributions to the [hhh| reflections in neutron
scattering measurements. Any two sublattices are at an angle of 109° from each other
and the spins point alternately in and out of the tetrahedra. No additional neutron
diffraction peaks appear below Ty = 20(2) K, indicating that the magnetic and nuclear
cells are identical. However, the contribution from the [220] and [311] peaks increases
below Tx.

Monte Carlo simulations [4] using a classical model with nearest neighbour antiferro-
magnetic interactions confirm that there is no spin freezing at non-zero temperature. This
is evidence that thermal fluctuations beyond the mean field approximation do not sta-
bilise LRO. The simulations were carried out using the standard Metropolis spin-flipping
algorithm [47] over a temperature range of 0.05 < T/J < 20. A number of thermo-
dynamic quantities including the internal energy and heat capacity of the system were
calculated. No maxima or finite size effects in the heat capacity were observed. Hence
the spin-spin correlations do not extend beyond a distance of two unit cells. The Edwards
Anderson spin glass order parameter (see Chapter 6) was also calculated and approaches
zero at all temperatures, eliminating the possibility of some kind of disordered but static
spin configuration. Nor were any sharp peaks or finite size effects observed in the pow-
der neutron scattering function calculated from the low temperature spin configurations.
These would have indicated ordering at incommensurate wave vectors.

Similar classical Monte Carlo calculations at 0 K of have been performed for antifer-
romagnetic Heisenberg interactions between nearest neighbours, to study the distinctive
neutron scattering function for a single crystal [48, 20]. There is a very large degree
of anisotropy in the scattering, revealing an anisotropy in the length scales of the mag-
netic correlations. Along the (001) and (111) directions the scattering is relatively sharp,

signifying correlations which extend over tens of nearest neighbour distances, whereas
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correlations along the {(110) directions extend no further than nearest neighbours. Using
Moessner’s arguments [49], it follows from the ground state condition ¥°3_; S; = 0 that
the sum of all spin vectors in two adjacent planes is zero. Therefore, these planes are
antiferromagnetically correlated and since these correlations are long ranged, sharp peaks
are expected in the (200) directions. However, these features differ from Bragg peaks in
that they are sharp only in one direction in reciprocal space and scale differently with
sample size. This is similar to the type of order seen in liquid crystalline materials.

Possibly the most interesting feature of the classical ground state of pyrochlore and
kagomé [51, 52] lattice antiferromagnets is the prediction of a dispersionless zero fre-
quency spin-wave branch (“zero modes”). These local zero modes are degrees of freedom
(unhindered rotation at zero frequency) in the ground state which involve only spins in
a finite region in the bulk of the system. They differ from Goldstone modes [50], spin
wave excitations in which the sublattice magnetisation oscillates slowly as a function of
position and which have zero frequency only at the ordering wave-vector, rather than all
q.

Consider the kagomé lattice, where the zero modes are more easily visualised. Through
the mechanism of “order-by-disorder” described later, nematic order is stabilised [52, 53],
where the spins select a single plane but may orient themselves randomly within the plane.
There are still an infinite number of coplanar ground states satisfying the condition that
all spins point along one of three directions mutually oriented at 120° or Z?zl S; =0.
However, among these the g = 0 and v/3 x v/3 structures shown in Fig. 2.3 are special
in that they are characterised by a single wave-vector each. For the g = 0 Néel state,
zero modes correspond to tilting spins around a hexagon alternately into and out of the
plane. In the case of the v/3 x v/3 structure, all neighbouring spins for each hexagon
are collinear; hence those spins on the hexagon may rotate without energy cost around
this common axis. Using these zero modes to rotate spins, any ground state may be

constructed from any other. Zero modes manifestly affect the thermodynamics of these
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Figure 2.3: a) ¢ = 0 and b) v/3 x v/3 Néel like ground states of the kagomé lattice.
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classical systems, as demonstrated by Monte Carlo simulations, where the low temper-
ature specific heat, C,, falls below the classical value kp expected from equipartition of
energy [3, 4]. However, while zero modes do not contribute to the specific heat of the
theoretical model, in a real material they would likely be stabilised by quartic energy
terms and appear as diffusive or overdamped excitations [54]. Also, again because of
these zero modes, the kagomé and pyrochlore antiferromagnets should display large spin
fluctuations down to T = 0%, at least theoretically.

Moessner et al. [49, 55] have considered a classical n component vector spin model
with nearest neighbour interactions to study the precessional dynamics. Using qualitative
arguments they describe how to construct all the ground states of the systems and show
that the ground state manifold is “connected”, or not separated by energy barriers. Thus
any ground state may be continuously deformed into any other without cost in energy.
This is in contrast with the highly disordered regime of traditional spin glasses. In this
latter case the various ground states are thought to be separated by energy barriers,
explaining the wide variety of time dependent effects observed. The dynamics of the
system were studied with both analytical techniques and by numerical integration of the
equations of motion of the system,

ds;

- = SinH;()

using a fourth order Runge-Kutta algorithm, where H ;(t) is the exchange field acting
at site j and L,, Lg are the total spins of the 2 tetrahedra to which each spin belongs.
No freezing is observed even at T'= 5 x 107%7. As the temperature is lowered towards
approximately T < 0.17, the form of the autocorrelation function changes. Rather than
decaying initially as (S;(0)-S;(t)) « 1 —ct?, the autocorrelation function becomes expo-
nential in time and independent of exchange energy with a characteristic relaxation time
of h/kgT. The correlations are also very small beyond second neighbour distances. The

density of states is finite at w = 0, neither diverging with a delta function contribution
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nor vanishing as w — 0. Note that this differs from the frequency dependence (propor-
tional to w?) expected for Néel ordered antiferromagnets, including ordered states of the

pyrochlore antiferromagnet [56).

Figure 2.4: The effect of a non-magnetic impurity I in a tetragonal spinel. Three planes
of spins are shown, the 2 axis lying perpendicular to the planes. The interactions are
restored between the spins at a, ¢ and ¢/, which would cancel in the pure material. In
an indiluted system the coupling between spins along infinite chains AA’, BB’ and CC’
is given by J, that between chains by J’. After Villain [2].

In his classic paper, Villain considers the effects of anisotropy and non-magnetic
impurities on the ground states of classical spins otherwise described by a Heisenberg
Hamiltonian. For a cubic spinel, the ground states of each tetrahedron (not all ground
states) can be obtained by associating the four spins with two antiparallel pairs. An
infinite number of ground states can be obtained by forming closed loops so that each
bond is involved with only one loop and and different loops are independent. Correlations
are thus only short range and so the system behaves as a cooperative paramagnet. For

a tetragonal spinel, pairs of nearest neighbour spins perpendicular to the tetragonal axis
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% form chains parallel to two orthogonal directions Z and ¢, as shown in Fig. 2.4. There
are two cases depending on the ratio of the coupling constants 7 and J' perpendicular
and parallel to the 2 axis: if (J/J’) < 1, the chains are ferromagnetic and chains of two
successive planes perpendicular to Z couple antiferromagnetically. In this case the ground
state is non-degenerate, except under identical rotation of all spins. Alternatively, if
(J/J') > 1, the chains are antiferromagnetic and interactions between chains cancel out;
the ground state remains degenerate, but much less so than for the cubic system. Villain
claims that a vanishingly small concentration of non-magnetic impurities suppresses the
ground state degeneracy and transforms the system into a spin glass. The qualitative
argument can be understood by considering Fig. 2.4. With no impurity present, infinite
chains AA’, BB’ and CC’ are decoupled. When an impurity is present, the chain AA’
is broken. However, half chains A,C,C’ are now coupled together, as well as A’, B,
B/, since the interactions between chains no longer cancel. Therefore a small but finite
number of impurities is sufficient to couple all the spins. The difference between cubic
and tetragonal systems arises from the number of impurities necessary, believed to be
approximately equal to the ground state entropy. The latter is proportional to N for a
cubic spinel and to N?/3 for a tetragonal spinel, where N is the number of spins, of the
order of Avogadro’s constant.

The theoretical arguments are similar for impurities alone. For a small concentration
of non-magnetic impurities the system is expected to remain a cooperative paramagnet
with degeneracy. However, if the system is sufficiently diluted such that no tetrahedra
have 4 magnetic ions, only tetrahedra with 2 or 3 magnetic sites need to be considered.
For one isolated tetrahedron with one non-magnetic impurity, a 120° structure is formed
with no degeneracy, except under identical rotation of all spins. Then a spin glass is
predicted, i.e. there are infinite range correlations between pairs of ions but the sample
average does vanish at zero temperature when r goes to infinity. The above considerations
are believed to be correct for Heisenberg or XY models. In Ising models the system is

expected to remain a cooperative paramagnet for all impurity concentrations, because
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tetrahedra with 3 magnetic ions still have a degenerate ground state.

Experimentally, the normal spinel ZnCr,O,4 undergoes a transition to an antiferro-
magnetic state with a tetragonal distortion below Ty=13 K (Ref. [18]). However, the
addition of defects like non-magnetic impurities stabilises a spin glass phase, as observed
in ZnCr; 6Gag 404 [19]. The magnetic phase diagram of the ZnCro,Gag_2,04 system has
been mapped out using dc and ac-susceptibility, neutron diffraction and Méssbauer ef-
fect measurements [57], which show a decrease in the spin glass transition temperature
with increasing non-magnetic Ga ion concentration. The normal spinel ZnFe,O4 has also
recently been studied using neutron diffraction, 5’Fe and $"Zn Mossbauer spectroscopy
and uSR [17] Short range correlations develop below ~100 K, which then coexist with
the onset of long range anti-ferromagnetic order at 10.5 K. Partial inversion, where A
atoms occupy a fraction of the B sites, introduces disorder which broadens the mag-
netic transition, but does not suppress the long range order. By contrast, an increasing
spin glass ordering temperature occurs on dilution of SrCrs_,Gaq+:019 (Ref. [58]) with
non-magnetic Ga ions.

More recently, Bramwell et al. [5] have also examined a classical Heisenberg pyrochlore

lattice antiferromagnet with local planar single ion anisotropy:
1
H=-573S; k=D (S; m)" (2.12)
gk J

The exchange coupling J < 0 and D < 0 is an anisotropy constant. The n; axes for each
spin are parallel to the four threefold axes of the tetrahedra, i.e. the four (111) directions.
The zero temperature ground state is predicted to be macroscopically degenerate and
without long range order, as in the case D = 0. The alternate case of D > 0 gives rise
to a non-degenerate four-sublattice ground state, as observed experimentally in FeFs.
However, Monte Carlo simulations used to investigate the properties of the system for
D < 0 at finite temperature show that thermal fluctuations select a subset of the ground
state manifold and induce a first order phase transition to a conventional Néel ground
state. This behaviour is referred to as “order-by-disorder” [59]. At a small but finite

temperature T the system can explore various ground state configurations and their
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corresponding low lying excitations. There are usually a greater number of softer and
more easily excitable states associated with the ordered ground states than with the
disordered ones. Therefore, the ordered states are preferentially selected by entropy
considerations, the greater number of accessible states resulting in increased entropy
or Boltzmann weights. In a quantum system zero point fluctuations can achieve the
same effect. Villain’s argument about impurities in Heisenberg spinels with tetragonal

distortions could also apply to a system with local easy plane anisotropy.

2.2 Quantum spin 1/2 Heisenberg pyrochlore antiferromagnet

There are only a limited number of papers which discuss geometric frustration on the
pyrochlore lattice from a quantum mechanical point of view. Harris et al. [6] used field
theory techniques to examine a quantum spin 1/2 Heisenberg antiferromagnet with near-
est neighbour interactions. It was found that quantum fluctuations lead to a state with
static correlations not in (S) but in (S(r) - S(r + 8)), where & is the nearest neigh-
bour vector. Correlations propagating around a hexagon of bonds spanning six corner
sharing tetrahedra lead to critical fluctuations. There are symmetry breaking and long
range static correlations which extend throughout the whole crystal. The pyrochlore
lattice may be thought of as face centred cubic (fcc) with one “up” and one “down”
tetrahedron per fcc unit cell, or in terms of one independent tetrahedron per umit cell,
coupled by intertetrahedral bonds which are equal in strength to the intratetrahedral
bonds. The ordered state is one in which, say, the “down” tetrahedra are disordered
and the “up” tetrahedra are ordered. However these up-tetrahedra are not all ordered
identically. Rather, 4 equivalent interpenetrating cubic sublattices are formed. On 3 of
the sublattices dimers are formed according to the 3 ways of forming four spins into pairs.
Sublattice 4 is disordered or randomly dimerised.

The field theory results are consistent with results using degenerate perturbation
theory to analyse the ground state manifold. The unperturbed Hamiltonian is the highly
degenerate manifold which results when the intertetrahedral bonds are neglected. The
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perturbing Hamiltonian splits the ground state degeneracy. Quantum fluctuations are
thus shown to play an essential role in the ordering.

Recent work by Canals et al. [7, 8] would at first glance seem to contradict that of
Harris. The former papers claim that the ground state is a spin liquid with low energy
excitations which are singlet to singlet transitions. To make the two results consistent,
the static, long range dimer ordering would have to melt, presumably because the dimers
become delocalised. Whether or not there were a gap in the excitation spectrum would
distinguish the two states. Canals et al. calculated the density operator to third order
in J'/J but were mainly interested in the spin-spin correlation functions, which were
calculated up to the 16th neighbour. In fact, in this calculation it was assumed that
there was no ordering of any kind; this is consistent with their results, which indicate
very short range correlations. Dimer-type ordering cannot be excluded, but to study
dimer ordering it would be necessary to calculate other types of correlation functions.

Order parameters involving three or four spins cannot be tested with their method.

2.3 Spin 1/2 Ising pyrochlore: “spin ice”

In water ice the oxygen atoms form a hexagonal lattice (wurtzite structure). Of the
4 hydrogen atoms arranged tetrahedrally around each oxygen atom, two form strong
covalent O—H bonds and are close to it to form a water molecule; the remaining two are
hydrogen bonded and further removed. The arrangement of protons obeys the Bernal-
Fowler ice rules [60], but need not be the same in each unit cell. In a crystal of 2N
bonds there are 22V possible ways of arranging the protons, not all of which satisfy the
ice rules. Out of 2*=16 ways of arranging the bonds around a single oxygen, only 6
satisfy this condition. The total number of allowed configurations is therefore of the
order of (6/16)V22N = (3/2)". Experimentally, the associated residual entropy is found
to be close to the theoretical value Sy = NkIn(3/2). Although the H disorder can be
represented as configurational entropy, there is no clear violation of the third law of

thermodynamics. This is because energy barriers of the order of 1 eV would have to be
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Figure 2.5: Ground state configuration of spins on a single tetrahedron given ferromag-
netic interactions and strong easy axis anisotropy along the dashed lines.

surmounted to establish long range order in hydrogen ion position. As a result, relaxation
through tunnelling into a lower entropy state is an extremely slow process below ice’s
freezing temperature and the system is therefore not in thermal equilibrium.

The only exact solutions of three-dimensional ice-type models are for very special
“frozen” states [61]. Baxter considers only ice type models on a square lattice [62], but
they exhibit similar behaviour. The hydrogen ion bonds between atoms form electric
dipoles, so they can conveniently be represented by arrows placed on the bonds pointing
towards the end occupied by the ion. The ice rule is then equivalent to saying that at
each site there are two arrows in and two out, as shown in Fig. 2.5. Spin orientation
thus plays a similar role to that of hydrogen position in ice and magnetic analogues of
water ice, so called “spin ice” are currently of extreme interest. Moessner [63] shows

that a strongly anisotropic classical Heisenberg model on the pyrochlore lattice can be
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mapped onto an Ising pseudospin model with an exchange constant opposite in sign.
To understand how this arises consider the case of strong anisotropy (|J/D| < 1): the
second term in Eq. (2.12) dominates, constraining the spins to lie along the (111) axes.
The first term defines the direction in which they point, such that the enclosing angle
between any pair may only take on values of 70.5° or 109.5° with corresponding energies
of £7 cos 70.5° = £.7 /3. Now Ising pseudospin variables T; may be assigned to the spins

S;. If a given spin points out of the tetrahedron T} is chosen to be +1 and conversely

T; = —1 for a spin pointing inwards. Equation (2.12) can now be rewritten as
H= % > T;T. — DN, (2.13)
Ik

where N is the total number of spins in the system. The second term becomes a constant,
but more importantly, the sign of the exchange interaction has been reversed and in
addition, an anisotropic Heisenberg model has been converted into an Ising model.

The ground states of the anisotropic frustrated ferromagnet are separated by large
energy barriers. The energy of a single tetrahedron can be minimised with two spins in
and two spins out. There are 6 ways of arranging 4 spins satisfying such a constraint
— the whole system thus has finite entropy per spin down to T = 0. By contrast,
strong anisotropy in a pyrochlore Heisenberg antiferromagnet may be described by a
ferromagnetic Ising model, which appears unfrustrated. The frustration cannot actually
be removed, but the anisotropy lifts the ground state degeneracy completely. Such a
relieved antiferromagnet should be simply described by a unique long range ordered
state at low temperatures and the dynamics by spin wave excitations. However, this
is not the case for large values of |D/J|. If the system is cooled down quickly or in
an applied magnetic field, it will be trapped in a metastable state at T ~ |D|, which is
separated from the ground state by large energy barriers. This occurs before the magnetic
ordering temperature may be reached, at temperatures of the order of J. By contrast,
for small |D/J|, freezing does not occur because the system is then well approximated
by an isotropic Heisenberg antiferromagnet. Long range correlations are thus absent,

as described in Section 2.1 and there are neither internal nor free energy barriers to
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overcome as the temperature is lowered through J down to the ordering temperature
below |D|.

Bramwell and Harris [64] present Monte Carlo simulations of the susceptibility for a
number of models. The unfrustrated models, namely the “up-down” Ising spin model
with ferromagnetic interactions, and the antiferromagnetically coupled “in-out” model
where there are four local (111) anisotropy axes, show evidence of the expected phase
transition at T/|J| = 4. The (111) Ising ferromagnet shows deviations from Curie like
behaviour below T'/|J| = 10, but the susceptibility diverges only at T' = 0, as expected for
a paramagnet. This reflects the presence of a significant number of magnetised states in
the degenerate ground state manifold. The up-down Ising antiferromagnet does however
show evidence of a peak in susceptibility, as the spins settle into their local ground states.

Experimentally, the magnetic ions in a number of pyrochlores have recently been
found to be subject to significant single ion anisotropies, whose local easy axis is along
the (111) directions and which are thus candidates for spin ice behaviour. Heat capacity
measurements on DysTi;O7 [65] are in good agreement with Pauling’s prediction [66]:
there is missing entropy between 0.2 and 12 K compared to the value of RIn2 expected
for the ground state doublet. Instead, a value close to R(1ﬁ2 —1/2In3/2) is observed,
consistent with the prediction of Pauling for ice. Susceptibility measurements [67] do
not show the sharp cusp expected for a spin glass, but rather a broad feature peaked
at T = 0.7 K. Sharp peaks in the specific heat do however develop on application of a
magnetic field.

To date, the most extensively studied spin ice material is Ho,Ti;O7 [68, 69]. The Ho®**
ion is Ising like due to crystal field splittings which result in a ground state doublet with
J. = +8. Neutron scattering measurements indicate that no long range order develops
down to temperatures of at least 0.35 K in zero magnetic field, but instead, short range
ferromagnetic correlations are observed. The idea which seems to be emerging is that
there is no phase transition to a spin glass state, for example, but rather a continuous

slowing down of spin fluctuations as the temperature is reduced, due to the development
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of energy barriers. A number of ordered phases have also been observed on application
of a magnetic field, as well as history dependent behaviour. Monte Carlo simulations by
Harris et al. [70] show that the degree of degeneracy breaking depends on the direction
of the applied field relative to the crystal axes.

The typically large magnetic moments associated with the rare earth oxide pyrochlores
raise another issue. Given local Ising axes along the (111) directions, the magnitude of
the dipole-dipole interaction between nearest neighbours is given by D,, = (5/3) times
the usual estimate of the dipole energy, (uo/4m)g?u?/73,, comparable with the exchange
interaction. Competing dipolar and superexchange interactions were first studied within
a spin-ice type model by Siddharthan et al. [71] using Monte Carlo simulations. The
dipole-dipole interaction was truncated beyond the fifth nearest neighbour in this work.
In subsequent studies [72] den Hertog and Gingras argue that due to the long range nature
of this interaction the truncation can lead to misleading results. They therefore use
Ewald summation techniques to consider the effect of infinite range dipolar interactions.
They present Monte Carlo simulations and mean field analysis which shows that spin ice
behaviour persists in the presence of AF exchange up to Jpn/Dnn ~ —0.91. For smaller
values there is a second order phase transition to the doubly degenerate g = 0 phase of
the nearest neighbour AF exchange only model, where all spins either point in or out of

a tetrahedron.
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The Pyrochlore Environment

3.1 Sample Preparation and Characterisation

Pyrochlores are face centred cubic in structure with space group Fd3m (no. 227). The
compounds studied in this thesis have a general formula A}*B3*O3~0’, though other
oxidation states of the A and B site ions are possible. A is generally a rare earth ion; B a
transition metal. The symbol O’ indicates an 0%~ ion in a crystallographically different
site. There are 8 formula units per conventional unit cell; the coordinates of the various
ions are listed in Table 3.3. The ions on the 16d site form a network of corner sharing
tetrahedra; the 16c sites constitute an identical sublattice, displaced by (3,3,3). B**
ions occupy the 16¢ site, A3* ions the 16d site. The structure is built up of slightly
distorted BOg octahedra and AQO; distorted cubes, as shown in Figure 3.6. It will be
convenient to redefine the four (111) axes as the 2 axis in the crystal field calculations
described in the next section. Using this natural axis of symmetry, the B ion is then
surrounded by 3 oxygen ions forming a triangle in a plane above it and three below, all
equidistant. The A ion is surrounded by 6 equidistant oxygens which form a puckered
hexagon in the Z —§ plane, as well as 2 more which lie on the 2 axis, at slightly greater
distances. However, the precise positions of the oxygen anions depend on the parameter
z, as can be seen in Fig. 3.7. At two extremes in the value of z of 0.3125 (5/16) and
0.375 (3/8), there is respectively perfect octahedral symmetry about B or regular cubic
coordination around A. Y>Mo,O7 is a semiconductor with a small band gap of 0.013
eV [73], while the titanate pyrochlores are highly insulating.

29
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Ion Location Site symmetry Coordinates
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Table 3.3: Pyrochlore (A;B20s0’) Structure Data (Origin at B Site).

{c)

(a) Oo
@o (b)

Figure 3.6: Description of the pyrochlore structure from Pannetier and Lucas [76]. a)
B tetrahedra with 48f oxygen outside. b) Corner shared B tetrahedra indicating the
octahedral oxygen coordination around each B ion. c) A ion tetrahedron showing central
O’ ion with near perfect tetrahedral angles.



Chapter 3. The Pyrochlore Environment 31

s : 1
] H ]
) | @
] 1 :
R e
o Q-
- x =0375
x=0.3125 O o(sa8t)
@ o'(8b)

Figure 3.7: Change in shape of coordination polyhedra of A and B ions with 48f oxygen
parameter z. After Faucher and Caro [77].

All the polycrystalline pyrochlore samples studied were made by N. P. Raju at McMaster
University, using a solid state reaction. To ensure all water had been removed, high purity
R,0; powders (99.99%) were prefired at 1000° C for 5 hours and cooled down to room
temperature before weighing them. R203; and MoO, powders were taken in stoichiometric
proportion, mixed thoroughly and pressed into pellets. These pellets were then heated
in an alumina crucible at 1400° C for 24 hours in an argon atmosphere before cooling to
room temperature. This procedure was repeated until X-ray diffraction patterns revealed
only a single phase.

X-ray [78] and powder neutron scattering measurements [79] on Y2Mo,O7 indicate
the crystal structure is consistent with a fully ordered pyrochlore model. From Rietveld
profile refinements of neutron diffraction measurements [80], one can say the concentra-
tion of oxygen vacancies, likely the main source of crystalline disorder in these materials,
is below the detectable limit of 1%. Hubert [81] has suggested that the O’ atoms may be
disordered over the 32e sites. Including this did not significantly improve Rietveld profile
refinements. A distribution of O’ over the 8b and normally vacate 8a sites [82] also gives
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Material ~ Cubic Lattice Parameter (A) Oxygen parameter x

Y2M0207 10.232 0.338
Y.TipO7  10.095 0.328
Gd,TiO7 10.185 0.322

TbyTipO7 10.152
Tm2T1207 10.054

Table 3.4: Lattice constants and 48f oxygen parameter z of selected A3*B3*00’ py-
rochlores. Values from Ref. {74].

no significant improvement. Direct evidence for positional disorder between Y and Mo
is difficult to obtain because of the similarity in their neutron scattering cross sections.
However, there is indirect evidence in that the bond angles and lengths are compara-
ble to similar materials. Significant disorder would imply intermediate bond lengths to
those observed. Since the ionic radii of Y3+ and Mo%* are very different, there should
be no admixing between the 16¢ and 16d cations. This is confirmed by analysis of X-ray
data. It should be pointed out that the Mo ion has a substantially enhanced thermal
or Debye-Waller factor, which could be due to an unusually low Debye temperature or
to static positional displacements not well analysed by standard Rietveld profile refine-
ment. Recent x-ray absorption fine structure (XAFS) measurements by Booth et al. [83]
suggest that it is due to disorder on the level of ~ 5% in the Mo-Mo pair distances at
approximately right angles to the Y-Mo pairs.

The sample of AuFe (0.5% at.) described in this thesis (see Chapter 6) was provided
by J. L. Thdlence (LEPES-CNRS, France). This material is usually made by induction or
arc melting [84, 85, 86]. This particular specimen had been stored at room temperature
for several years. It is well known that the spatial distribution of the magnetic impurities
in archetypal spin glass alloys is of crucial importance in determining the number and
type of magnetic interactions or bonds. Morgownik and Mydosh [87] have shown that

the distribution of Fe or Mn impurities in Cu, Pt and Au metallic hosts is non-random
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Figure 3.8: The static susceptibility of AuFe (0.5% at.) versus temperature in a magnetic
field of 0.001 T, a) before and b) after annealing at 900° C for 24 hours and quenching.
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and further that the atomic short range order influences the magnetic phase diagram.
In addition, ageing, or the dependence of measured properties on the temperature and
magnetic field history of the sample is an unavoidable phenomenon in spin glasses. This
is due to the non-equilibrium behaviour of these materials. With these ideas in mind, a
series of susceptibility measurements were carried out. Initially the sample was zero field
cooled (ZFC) from 30 K before applying a magnetic field of 0.001 T. The measurements
were then taken on warming. Subsequently it was field cooled from 200 K and the sus-
ceptibility again recorded on warming. As can be seen in Fig. 3.8a, the characteristic
ZFC cusp in the dc susceptibility and the difference between FC and ZFC measurements
are apparent, despite having been stored at ~ 300 K for such an extended period. One
might have anticipated that diffusion of Fe atoms to form clusters would affect its macro-
scopic behaviour. The alloy was then sealed under vacuum in a quartz tube (see Fig. 3.9)
and annealed at 900° C for 24 hours, before being quenched in ice water and repeating
the SQUID measurements, shown in Fig. 3.8b. There are only very subtle differences
compared to Fig. 3.8a. Nevertheless, after rolling the sample into a ~ 0.25 mm foil more
suitable for SR measurements, the annealing and quenching process was repeated and

the sample stored in liquid nitrogen until the experiments took place.

3.2 Crystal electric field effects

The energy scale for the cooperative phenomena observed in a magnetic system is usually
a function of the strength of the spin-spin coupling. However, in general there are a
number of other stronger interactions which set the energy levels of a multi-electron atom.
The Coulomb interaction of an electron with its nucleus and with the other electrons,
suitably averaged such that it has central symmetry, gives rise to electronic shells e.g.
3d3. Single electron spin-orbit coupling is most simply described by a Hamiltonian of the
form

His =¢(l - s). (3.14)
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Figure 3.9: AuFe (0.5% at.) foil sealed under vacuum in a quartz tube. (S. R. Dunsiger)
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Assuming the electron spin-orbit coupling is negligible compared with intra-atomic electron-
electron Coulomb interactions, a reasonable approximation for light atoms, the ground
state is described by Hund’s rules. In this case, to a good approximation the Hamiltonian
of the atom or ion obeys Russel-Saunders or LS coupling, where J, L and S are all good
quantum numbers. For multi-electron atoms in their ground state and where Hund’s

rules are applicable, LS coupling is described by an equation of the form

—+57.
AL-S=iL- S (3.15)

where the + and — signs are appropriate for electron shells which are respectively less
than or more than half full. Typically, A is 10 - 100 meV for transition group ions and
100 - 1000 meV for rare earths.

Crystalline electric field effects, due to the interaction of an ion with surrounding
ligands, can be treated as a perturbation on the free single ion wave functions and energy
levels. To estimate the energy levels and eigenfunctions of the ion in the crystalline field
the matrix elements of the perturbing Hamiltonian between free ion states are evaluated.
The free ion wave functions used will depend on the relative size of the crystal field
Hamiltonian and the intra-ionic interaction energies. The crystal electric field affects
closed shells of electrons and S state ions only in a high order of perturbation theory.
At the other extreme, crystal electric field effects are large compared to the spin-orbit
coupling in 3d transition metals and thus interact with the orbital angular momentum
only, lifting the 2L + 1 degeneracy of the eigenstates |L, S, L., S;) which characterise the
isolated ion. In 4d and 5d ions, the ligand fields are larger still, Hund’s rules are no longer
appropriate and single electron states must be used. In this case the ions are all in the
so called “strong ligand field” regime. By contrast, in the “weak ligand field regime”,
the 4f electrons in rare earths are subject to spin-orbit couplings much larger than the
crystal electric fields. The free ion is thus characterised by eigenfunctions |L, S, J, J.).

The crystal electric field calculations described in this section are based on the point

charge ionic model discussed by Hutchings [88]. Given a magnetic ion at the origin, the
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potential V' due to k surrounding point charges g; at R, is given by a Coulomb potential
£ g
V(r,0,0) =) ———0. 3.16
6.9 = 2 1w, ] (816

It is convenient to write the crystalline electric potential in terms of spherical harmonics

as it is easier to calculate the matrix elements of the the potential energy in this form.

[d k 4 Zm 9" .
Vinos) = STy rnelg etz 0,0) @17
n=0 a j= 3
= Y Ynar"Znal6, 9) (3.18)
n=0 o«

where Z,, are tesseral harmonics, or linear combinations of spherical harmonics. Using
the Stevens’ “operator equivalents” method, the crystalline electric field Hamiltonian is

given by

H = Z:‘L‘V(xi,yi,zi)
= 2D [V Zeoess(r")OA]OF,

where the sum 7 is over the magnetic electrons; @ is the charge of the magnetic ion.
The Stevens’ operator equivalents, matrices which transform under rotation in the same
way as the potential, are denoted by O7*. These matrices are tabulated in the article by
Hutchings, as are the coefficients Z..ss of the tesseral harmonics. The quantities in the
square brackets are known as the “crystal field parameters” and the operator equivalent

Hamiltonian is often written as

H=3S Bror (3.19)

which is usually fitted to experimental data, allowing the coefficients B} to vary.

The potential reflects the point symmetry of the lattice site in question. All terms
of order n > 2[, where [ is the orbital quantum number of the single magnetic electrons,
vanish. The “operator equivalent” method is really an application of the Wigner-Eckart
theorem, where functions of £, and Z are replaced by operators J;, J, and J., allowing

for their commutation rules.
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Point charge calculations were performed for the Mo*" ion on the B site of the py-
rochlore and the Tbh%+ ion on the A site, using the appropriate Stevens’ operator equiv-
alents given the spin and orbital angular momentum of each ion, as listed in Table 3.8.
As noted above, the (111) directions are natural axes of symmetry for both A and B
ions in their distorted cubic crystalline environments. For the Mo** ion the crystal field
Hamiltonian has terms

H = B0OY + BY0O? + BO%, (3.20)

while for Tb3* it is of the form
H = B2OR + BY0? + B30% + B2O? + B0 + BEOE. (3.21)

The Y3+ ion has the electronic configuration of krypton, i.e. a closed shell structure and
is therefore diamagnetic. On the other hand, the Mo** ion has an electronic configuration
resulting in a spin S = 1 and an orbital angular momentum L = 3 by Hund’s first
and second rules. The palladium (4d) group has been less thoroughly studied than the
3d group of transition metals, mainly because their compounds are more involved to
prepare. The wave functions for 4d electrons have the same angular dependence as 3d
electrons but are more extended radially. However, near the nucleus the radial part of
the wavefunction increases rapidly with atomic number. Since the coupling parameter
£ for spin-orbit interactions depends on the amplitude of the wavefunction, this effect
becomes more important. Blume et al. [89] have calculated £ to be 950 cm™! for the
Mo*+ jon. Unfortunately, radial expectation values for the 4+ oxidation state of this ion
are not available. Values for Mo®t [90] are listed in Table 3.9. It is these values which
have been used in the calculation described.

The strong ligand field approach appropriate to the 442 ion in an octahedral field is
discussed by Abragam and Bleaney [91]. For this particular ion both strong and weak
field approaches predict an orbital triplet. The *F; ground state constructed from Hund’s
rules for the isolated ion become mixed with a 3P excited state. Adding in the effect
of the trigonal distortion to the cubic crystal electric field (CEF) Hamiltonian leads
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Table 3.5: Eigenvalues and corresponding eigenvectors of the CEF Hamiltonian of the

Mo** ion in its pyrochlore environment.
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Table 3.6: Eigenvalues and corresponding eigenvectors of the combined CEF and
spin-orbit interaction Hamiltonians applied to the Mo®* ion in its pyrochlore environ-
ment.
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Tb3* ion in its pyrochlore environment.

Table 3.7
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to an orbital singlet. Starting from a 3F state, essentially assuming an intermediate
ligand field, the eigenvalues and eigenfunctions of the CEF Hamiltonian are presented
in Table 3.5. The effect of spin-orbit coupling on the three lowest CEF energy levels
is incorporated using Eq. (3.15) with an effective orbital angular momentum operator
L. Its matrix elements are written in terms of the 3 CEF eigenvectors lowest in energy.
As shown in Table 3.6, diagonalising the transformed spin-orbit interaction Hamiltonian,
the degeneracy of the spin triplet is broken into a doublet and singlet with the singlet
lowest. Details of the calculation, implemented with a MATHEMATICA [92] code, are
given in Appendix A.

There is little experimental information available on the 3d? ion in an octahedral
field to allow comparison. However, the vanadium ammonium alum V(NH,)(SOy4), is
also thought to have a local octahedral structure with a small trigonal distortion [93].
Susceptibility measurements are consistent with the author’s calculations, indicating an
orbital singlet ground state. The three fold spin degeneracy is similarly split by second
order effects like spin-orbit coupling.

The results of point charge CEF calculations on the Tb3* ion in its pyrochlore environ-
ment are summarised in Table 3.7. While group theory arguments predict either a singlet
or non-magnetic doublet for this ion in an cubic field [94], the author’s calculation, which
includes the trigonal distortion, indicates the ground state doublet is predominantly made
up of Jz = =5, whereas the first excited doublet is mostly Jz = +4. The oxygen and
terbium charge, as well as the oxygen parameter = have been adjusted to reproduce the
results of inelastic neutron scattering measurements on this material, described in Chap-
ter 8. Figures. 3.10, 3.11 and 3.12 illustrate the effect of varying each of these parameters.
A more sophisticated ab initio calculation of the crystal field parameters has been carried
out by Gingras et al. [95]. The lowest energy and first excited state doublets are found
to have large (~ 90%) Jz = +4 and Jz = £5 components respectively. Note the order
is reversed from the simpler calculation above. The point charge model has several

weaknesses: it neglects the finite extent of the charges on the ions; the overlap of the
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Figure 3.10: The effect of varying terbium ion charge on its CEF energy level splittings.
The lower box shows the 3 lowest doublets on an expanded scale.
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Figure 3.11: The effect of varying the charge of the surrounding oxygen ions on the CEF
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expanded scale.
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Ion Basic Electron Ground State
Configuration Term

Mo  [Kr]dd? 3F,
Gd3+ [Xe]4f7 887/2
Tb3  [Xeldf® "Fe
Tm3"' [Xe]4f12 3H6

Table 3.8: Electron configurations of selected Iron group and Lathanide ions.

©: O O (r) (r) (r°)
Mo+ 2 £ - 2.9052* 14.3861"
Tb* =k =& mogpg 0755 1419 5.688
Tm* Hle w2 5.5 0646 1.067  3.647

3211 345112 34.7-112-13

Table 3.9: Stevens’ multiplicative factors and radial expectation values for selected ions.
The latter quantities are in units of Bohr radii. *) Only values for Mot are available.

magnetic ions’ wave functions with those of neighbouring ions and the complex effects of
“screening” of the magnetic electrons by the outer electrons of the magnetic ion. How-
ever, this method serves as a first approximation to illustrate the principles involved and
calculate the ratio of terms of the same degree in the Hamiltonian for lattice sites of high
symmetry, since these ratios are independent of the model used and depend solely on
the symmetry. A calculation for Tm3* on the A site was also performed to gauge the
reliability of the technique as Tm,TisO7 is known to have a singlet ground state [96].
Below ~ 40 K measurements of the a.c. susceptibility are temperature independent in
this material, due to van Vleck contributions. Inelastic neutron scattering measurements
show evidence of a single peak at an energy transfer of 10.64 meV (123 K). Point charge
calculations correctly predict the singlet ground state with a splitting of 81 K to the first

excited state.
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3.3 Muon sites

Knowledge of the muon site(s) is often necessary for a complete understanding of the
uSR signals observed, yet is difficult to determine reliably. The muon may even be
mobile at elevated temperatures approaching room temperature. When single crystal
samples are available, the point symmetry of the muon site may be deduced from the
dependence of the uSR. signal on the orientation of the initial muon polarisation with
respect to the principal crystal axes. The bare pt is quite likely bonded to the most
electronegative species present. For example, in oxide and fluoride insulators there is
considerable evidence that the muon bonds to fluorine or oxygen. In fluorides this often
results in the formation of a hydrogen bonded (FuF)~ ion, generating a characteristic
oscillating ZF-uSR signal [97, 98, 99]. In oxide materials it is believed that the u*
sits 1 A away from an oxygen ion, as in the high 7. superconductors like rare earth
orthoferrites [100, 101] and YBayCuzOg4s {102] for example.

There are a variety of numerical packages involving quantum chemical calculations on
molecular or crystal systems which find minimum energy locations for protons or muons.
They range from purely empirical (the so-called molecular modelling programs) through
semi-empirical (MNDO, for example) to ab initio or first principles density functional
approaches. They all work on the variational principle, in that the lower the overall
energy of the system, the closer one must be to the “true” structure. The study of
defects in various semiconductors is perhaps the most well established. A recent review
article on hydrogen related defects in crystalline semiconductors [103] focuses mostly on
the theoretical developments in this field. It provides an introduction to Hartree-Fock,
density-functional and molecular dynamics techniques, their strengths and limitations—
a discussion which is beyond the scope of this thesis.

As a simplified approach to the problem, the author has instead used Ewald’s method [104]
to find the the electrostatic potential thoughout the pyrochlore lattice. A detailed de-
scription of this method is given by Slater [105] and the calculation described below
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follows his notation. The electrostatic potential energy of a set of charges g; is given by
1
E, = 3 2= (3.22)

using Gaussian units. It is impractical to solve the problem by direct summation, as this
involves an oscillating series where the terms decrease extremely slowly. In fact, even
though the potential energy decreases as 1/r, the number of neighbour ions & in a shell
a distance r removed from ion j increases as 72 and hence the series may not converge
at all. It is more convenient to solve this problem of calculating the potential ¢ using
Poisson’s equation:

V3¢ = —4mp, (3.23)

again in Gaussian units and where p is the charge density, i.e. charge per volume of the
conventional unit cell A3. That the two techniques are equivalent may be verified using
Green’s theorem.

Expressing ¢ and p as a three dimensional Fourier series to take advantage of the

periodicity of the lattice,
p=> KnP(Kn)exp(iKn - 1), (3.24)

where the K,,’s are the wave vectors of the reciprocal lattice and the P’s Fourier coeffi-
cients. Ewald assumes a unit positive charge at the lattice points of a Bravais lattice, plus
a uniform negative charge distribution such that the crystal is electrically neutral. The
uniform negative and positive charge distributions cancel out. The solution of Poisson’s
equation is then

¢= 47r;§ P(Km)%)-. (3.25)

However, it can be shown that this summation does not converge either, given point

charges. Therefore each point charge is replaced by a Gaussian distribution

3
;63-/—2- exp(—€r?) (3.26)
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where ¢ describes the width of the distribution. Quoting the solution without proof (see

Ref. {105]), we arrive at the potential for a unit positive charge:

_4r exp(~|Kn|?/4€?) exp(iKp - T) 1—erf(er;) =
A, B Y2 Tae GF

T
This result is independent of the value of € in Eq. (3.26) (chosen to be 18 in this calcula-
tion);  is the volume of the Wigner-Seitz unit cell for the fcc lattice. The potentials due
to all the ions in the basis are shifted so that their singularities come at the appropriate
lattice site. For instance, to calculate the solution for NaCl, two Ewald solutions are
superposed: one for unit positive charge at the origin, the other for unit negative charges
at points such as z = Ap/2, y=2=0.
Finally, Born and Mayer [106] suggested a term in the potential of the form

?4}—0 S e (.(R;‘_fv)) (3.28)

which acts as a hard core repulsion. The parameter Ry describes the hardness and was the
only quantity adjusted in this calculation, so that the potential energy minima occured
1 A away from the oxygen ions.

The potential energy in two (100) planes, chosen because they intersect minima, are
illustrated in Fig 3.13. All the minima shown in black are equivalent, related by symmetry
operations and occur at the position Ag(0.16,0.16, —0.17). The calculation was carried
out using the values of unit cell cell, ionic charge and size appropriate to Y,Mo2O7. As
can be seen, the potential energy minima occur closest to oxygen ions. This is true for
different values of the hardness parameter: only the oxygen - muon/proton separation
changes. While their position is reassuring, their depth is probably an overestimate.
This may be due in part to the fact that positional relaxation of the neighbouring ions
was neglected in this calculation. As a comparison, maps of H potential energy in the
anhydrous pyrochlore HTaWQg [107] show that proton hopping occurs between adjacent
48f sites along edges of (Ta,W)Og coordination octahedra. The calculated activation

energy of 0.6 eV, optimised by using fractional ionic charges, is in good agreement with
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Figure 3.13: Map of electrostatic potential energy on several (100) planes for Y,Mo20x.
The horizontal and vertical axes are parallel to the [010] and [001] directions respectively.
Contour lines are in units of hartrees (27.2 eV).
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the experimental value of 0.66 eV. The small value of —0.70e obtained for the oxygen
charge indicates the substantially covalent nature of the Ta-O and W-O bonds.

Since the implanted muon is a charged point impurity we expect that it will modify
its local electronic environment. It is also possible that a hydrogen-like neutral species
ute~ or muonium (chemical symbol Mu) may form in any insulator or semiconductor,
by capturing an electron from the stopping medium. See Chapter 6 for a discussion on
muonium formation.

In metals the conduction electrons are redistributed, contributing to the screening of
the u* charge. In transition metals and compounds the muon may alter the exchange
coupling between the conduction electrons and the local moments and therefore also the
RKKY interaction between moments. The crystal electric field splittings may be changed
in f-electron compounds in the neighbourhood of the implanted muon due to additional
electric field gradients. This could in principle affect the local spin susceptibility, although
in most 3D compounds such effects tend to be small.

It is interesting to note that in contrast to NMR, uSR probes the local field at an

interstitial site.



Chapter 4

Description of the Experiments

4.1 Production of Spin Polarised Muons

At TRIUMF and other “meson factories”, muons are produced as follows: > 500 Mev
protons are incident on a target of typically carbon or beryllium and the resulting proton-
proton and proton-neutron collisions result in the production of pions. Negatively charged
pions are almost immediately captured by the target nuclei and hence their subsequent
decay into muons and neutrinos is not observed, while the 7° rapidly decays electromag-
netically with a lifetime of (0.82 % 0.04) x 10~1¢ s. Henceforth only positive pions and

their subsequent parity violating weak decay will be considered:

-+

at - ut+uy, (4.29)

with a lifetime of 7 = 26.02(4) ns [109].

The experiments described in the following chapters were carried out using so called
“surface muons”, a type of muon beam first developed by Pifer et al. [110], which makes
use of very low energy pions decaying at rest near the surface of the primary production
target. Because the decay of the pion is a two body process, the muon and neutrino are
emitted in antiparallel directions by conservation of momentum. They must also have a
combined spin of 0, since the pion is spinless. Since the neutrino has been shown experi-
mentally to have negative helicity [111], i.e. its spin is antiparallel to its momentum, the
muon beam is also fully spin polarised opposite to its momentum direction with a kinetic
energy of 4.12 MeV in the rest frame of the pion. This gives the muons a mean stopping
range which varies with the material in question: typically 140 mg cm~2 in water with a

straggling range of 20 mg cm™2.

52
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ut e pt
Lifetime 2.19703(4) us > 4.3 x 102 years > 1.6 x 10% years
Type lepton lepton baryon

Mass [Mev/c?] 105.65839(4) 0.5109991(2) 938.2723(3)
Magnetic moment [up] 4.8419710 x 10~° 1.001165923(8) 1.521 x 1073
Magnetic moment [uy] 9.021 1838 2.79284739(6)
Gyromagnetic 135.54 28020 42.5759

ratio /2w [MHz/T]

Table 4.10: Selected properties of u* and other particles.

Figure 4.14: A polar coordinate plot of the rate of positron emission from muon decay as
a function of angle from the muon spin, at various energies €. The distribution has axial
symmetry about the muon spin polarisation direction, which points towards the right in
this plot.
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Positive muons then decay via the interaction
pt—et+o, +v.. (4.30)

Because this involves a three body decay, the kinetic energy of the emerging positrons
varies continuously from 0 to E,,., = 52.3 MeV. The maximum positron energy corre-
sponds to the situation where the neutrino and antineutrino travel together in a direction
antiparallel to the positron. The direction in which a positron is emitted is correlated
with the direction of the muon spin at the time of its decay because of the parity vio-
lating terms in the interaction Hamiltonian, first confirmed experimentally by Garwin,
Lederman and Weinrich [112]. A quantitative description of muon decay involves writing
the weak interaction in terms of the V' — A picture of a current-current interaction. Sub-
stituting this interaction Hamiltonian into Fermi’s golden rule and integrating over the
momenta of the neutrinos, which are not detected, the decay probability per unit time
of the muon is given by

G*m;,
19273

(3-—2¢) [1 - %53—3 cos OJ de dcosé. (4.31)

The angle 6 is that between the muon spin and the momentum of the emerging positron;
€ = E/FE .. The asymmetry factor (2¢ — 1)/(3 — 2¢) depends on the positron energy
(see Fig. 4.14). In a typical uSR experiment there is no explicit energy resolution: the
energy average of the asymmetry is nominally 1/3 . However, in practice the low energy
positrons (whose asymmetry is actually negative) are unable to reach the detector, raising
the effective asymmetry; the finite solid angle intercepted by the detector reduces the
effective asymmetry, which is therefore treated as an empirical quantity.

4.2 uSR Experimental Setup

Muons emitted in a particular direction pass down the beamline to a Wein velocity filter
made up of crossed electric and magnetic fields. As well as preferentially selecting surface

muons and by the same token removing beam positrons, the filter or “separator” can also
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Figure 4.15: Signal timing for a typical time differential 4SR experiment using a Lecroy
4204 TDC.

be used at high fields to rotate the muon spin polarisation by 90°. Having optimised the
beam using a series of bending and focusing (quadrupole) magnets the muon beam is
typically collimated to about 1 ¢cm diameter. In a conventional time differential uSR
experiment tailored for a continuous wave (cw) facility like TRIUMF, only those events
where one and only one muon is in a sample at any one time are accepted. A thin
muon counter (TM) made up of 0.01” plastic scintillator is placed between the end of
the beam pipe and the uSR spectrometer, detecting incoming muons and defining a time
t =0. A Lecroy 4204 time-to-digital-converter (TDC) is started in fast data acquisition
electronics and a data gate of typically 10 us or ~ 57, is generated. The event is rejected
if a second muon triggers the muon counter within a time set slightly longer than the
data gate, resulting in “pile-up” (see Fig 4.15). The pile-up gate also rejects events with
an incoming muon any time within the gate width before this incoming one. The optimal
good event rate has been calculated by Garner {115] to be 1/(2 times the data gate
width). This corresponds to an event acceptance rate of 37%. Thick (1/4") scintillation
counters register the muon decay positron and stop the TDC. The measured time then

causes the corresponding channel in a histogramming memory to be incremented by one.
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Further details are described elsewhere [113].

The probability that a decay positron will pass through a given counter depends
on the asymmetric muon decay pattern, the shape and position of the counter and on
the direction of the muon spin at the time of decay. The ensemble average of this last
quantity is given by P(t), the polarisation function. For the n** counter, the histogram
of the time differences between muon implantation and decay positron detection is of the
form

N, (t) = N,(0) exp(—t/7.)[1 + anP(t) - 2} + By, (4.32)

where N,,(0) is a normalisation constant; B, a time independent random background due
to cosmic rays, positron contamination of the muon beam or photomultiplier dark noise,
for instance. It is assumed to be uncorrelated with the arrival time of the muon. The
effective counter asymmetry is given by a,, (on the order of 0.2 - 0.3) and 7 is a unit
vector along the direction joining the centre of the sample to the centre of the solid angle
subtended by the counter. By recording the ratio of the number of positrons detected in
scintillation counters 180° out of phase as a function of time, it is possible to reconstruct

the muon spin depolarisation function from the experimental asymmetry Apaw:

_ [Na(t) = Bn] = [Non(t) = B-n]

= No(®) = Bl ¥ [Non®) = Bl (4:33)

AawP(t) - 72

The multiplicative factor associated with the exponential decay of the muon automati-
cally cancels out. For N, accumulated muons, the signal to noise ratio is proportional
to anV'N,. However, Eq. (4.33) assumes the counters are identical. In reality, photo-
multiplier efficiencies, discrimination levels and counter positions will affect the random
background and the normalisation. Counter solid angles and efficiencies will also affect
the normalisation as well as the decay asymmetry a,. The positron energy distribu-
tions are set by degrader thicknesses, from the cryostat walls for example. For a pair of

counters, Eq. (4.32) becomes

N,(t) = Np(0)exp(—t/7.)[1+ anP(t) 7]+ B,
N_.(t) = aN,(0)exp(—t/7.)[1 — Ba.P(t) - 7] + B,
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where a = N_,,(0)/N,(0) and B = |a_,|/|as]- A “corrected asymmetry” Aco can then
be extracted from the raw asymmetry as

. [AawP(®)-A)(a+1)+ (a—1)
Acor P(£) - 7 = (@B +1) + [ArawP(2) - 7] (B — 1)’

where 3 is often taken to be 1. A thorough discussion of statistical details and possible

(4.34)

distortions in uSR spectra is given in Ref. [114], as well as in the theses of Garner [115]
and Riseman [116].

The muon spin interacts with the internal nuclear and electronic spins of the material
under analysis, probing the spatial and temporal variations in the local magnetic field.
Consider the van Vleck or high transverse field limit. Then, in the case of a purely
static field distribution, the muon spin depolarisation or relaxation P(t) - 71 occurs due
to dephasing, since muons experience different magnetic fields and therefore precess at
different frequencies. In the case of purely dynamic fluctuations, relaxation occurs due to
the absorption of energy quanta resulting in a spin flip. The relaxation depends on the
system’s spectral density at the muon Larmor frequency. However, these dinstinctions
become much less clear as the applied field becomes comparable with the local fields or
eventually goes to zero [125]. The technique of uSR is sensitive to spin fluctuation rates
within a material from 10~ to 107! seconds, a range set by the muon lifetime. The ge-
ometry used in a particular uSR experiment depends on the information to be extracted
(see Fig. 4.16 and Table 4.11). In a transverse field (TF) experiment, an external mag-
netic field is applied perpendicular to the initial muon spin direction. The envelope of the
resulting precession signal looks very much like a free induction decay signal in NMR, the
damping rate or linewidth being identified with 75 . Unfortunately, it is extremely diffi-
cult to distinguish between contributions to 75! from static internal magnetic fields and
those from fluctuations. A more effective method for studying spin dynamics in magnetic
systems is to measure the component of the muon spin polarisation along the applied
field (LF-uSR), using counters “backward” and “forward” of the sample position. Most
of the experiments described in this thesis are of the latter type. The configuration used
for the measurements in high applied magnetic field is shown in Fig. 4.17. In an applied
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N>

>

Figure 4.16: General counter arrangement for a *TF, uSR experiment. In the *TF,
geometry shown, the muon spin precesses about the vertical axis at an angular frequency
of w, = v,H. (From Ref. [114]).

field, the positron paths follow spirals with axes parallel to the field. Thus the effective
solid angles covered by the counters are altered and consequently the asymmetry as well.
The Lorentz force qv A B implies that a relativistic charged particle with momentum
py = ymv, perpendicular to the applied field B will have a radius of curvature given by

YMe+VL
eB ’

o= (B) - (25 430

and v = E.+/(me+c?). The maximum momentum for muon decay positrons is 52.83

(4.35)

where

MeV/c and thus in a 5 T field, a positron of this energy travelling perpendicular to the
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P, H

+z +2 TF - spin and field perpendicular

—2 =*zorxy WTF - spin and field perpendicular

-2 2 LF - spin and field parallel

-z +% wLF - spin and field parallel
+zor -2 0 ZF - no field

Table 4.11: Various geometries for a uSR experiment. The £ axis points upwards, the 7
axis from left to right, and the 2 axis in the direction of the muon momentum.

field direction will have a radius of curvature of only 3.5 cm. The radius will be even
smaller for all the slower or non-perpendicular positrons. It is interesting to note that, as
can be seen in the LF measurements in Fig. 7.55, this phenomenon results in an initial
decrease in Ao as the magnetic field is increased due to increased solid angle, followed
by an increase when lower energy positrons are no longer detected. They spiral back
through the hole in the back counter, altering the positron energy distribution in favour
of higher energies.

The cup shaped counter in Fig 4.17 serves two functions in a LF configuration:

e It allows one to reject events from muons which miss the sample by acting as a veto
V. The “good” start is thus given by the condition TM - V - Busy. In other words,
there must be a coincidence of a pulse in the thin muon counter, but no pulses from

both the veto and the pile-up gate generator indicating it is already busy.

e It also detects decay positrons from muons which land in the sample like an ordinary
forward counter. Its small size close in behind the sample is advantageous in high
fields, due to solid angle considerations. The alternative is to logically “OR” the 4
side positron counters in Fig. 4.17, each of which is in the shape of a 90° quadrant
in cross section and move them 2” downstream of the magnet centre. While this
configuration forms an adequate forward counter in low magnetic fields, the positron

orbits become too small as the magnetic field increases and miss the detector.
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Figure 4.17: Sketch of the apparatus used for high LF and high *TF, measurements.
The superconducting solenoid is 24” in length and has a warm bore 6” in diameter.

It has also proved very useful to be able to collect uSR spectra on two different sam-
ples simultaneously with no appreciable “cross talk”. To accomplish this, the apparatus
sketched in Fig. 4.18 was designed and constructed. The crucial part of this arrangement
is a second thin muon counter (TMj), held in position by brass screws between the sample
and a reference material, whose signal generates a second data gate. The geometry of
the two materials is arranged such that the reference only partially covers the beam spot
and those muons which miss stop in the sample. A valid muon stop in the sample is then
defined as F, - (TM+TMj), where F,, is one of the positron counters (see Fig. 4.19) .

The absence of a signal from the internal counter indicates that the muon stopped in

1Since this apparatus was first built, the Lecroy 4204 TDCs have been replaced by BNC B980 TDCS.
The data acquisition electronics have been correspondingly modified to suit.
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Figure 4.18: Cross sectional view of the apparatus for measuring two uSR spectra simul-
taneously. The apparatus has cylindrical symmetry and the sample is held in place on a
stage (not shown) which has 2 thin vanes slotting into the Al cylinder.

the reference. Light from the TM; scintillator is reflected 90° off a polished aluminium
surface and guided out the back end of the cryostat to a photomultiplier (not shown).
Using the technique described, time differential spectra are collected simultaneously for
two different materials, but separated by the electronics. The main advantage of this
technique is that, since the data on the reference and sample are taken under identical
conditions, many systematic effects such as drifts in the magnetic field, thermal insta-
bilities in the electronics, changes in the beam rate, or thermal contraction leading to
changes in sample position will be the same for both. Field homogeneity over the volume
of the sample is important, otherwise leading to increased linewidths in the uSR spectra.
The magnetic field variations in our experimental superconducting solenoid are shown
in Appendix B for the axial and radial directions. Hence the Ag reference is positioned
~1/16" upstream of the scintillator TM; and the sample in direct physical contact on the
downstream side. The reference must be sufficiently thick to ensure that muons do not

pass through to cause a pulse in the inner muon counter. By the same token, the second
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Figure 4.19: Schematic logic diagram of the fast electronics for time differential uSR
experiments using the “Separate spectra” apparatus and a Lecroy 4204 TDC.

muon counter must be thin enough to avoid range straggling. If an initial momentum of
29 MeV/c (4.12 MeV) and zero initial momentum spread 2 is assumed, using the Bethe-
Bloch formula, the muon kinetic energies range from ~ 1.9 — 2.7 MeV on reaching the
sample in a typical setup with the separate spectra apparatus.

By ensuring that the shape of the reference material prevents any muons from hitting
the sample stage, we ensure that the sample spectrum has essentially no detectable
correlated background signal. This eliminates other sources of systematic error due to
the fact that the ratio of background to foreground signal in a conventional setup may
vary with time (due to instabilities in the beamline) or with magnetic field (due to

focusing effects). High energy positrons and gamma rays are also detected by the muon

2The initial momentum spread is typically +5%.
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counters, though with much less efficiency. The use of two muon counters is analogous
to that of 2 positron counters in coincidence as a “telescope”. The “t0 peak” is thus
suppressed, eliminating the associated distortion in the spectra at early times. Another
benefit is the reduction in the uncorrelated background in the sample signal.

In order to test for “cross talk” between the two channels a spectrum was taken
with Al,O3; at the sample position. Since Al;O3; produces almost no muon precession
signal {117, 118] at 300 K, any observed signal can be attributed to false routing in the
TM detector. Nor is any muonium precession observed [119], due to rapid depolarisation
from large random local fields associated with the 2’ Al nuclei. Figs. 4.202 and 4.20b show
the Fourier transforms for the sample and reference respectively. The signal asymmetry of
Acorr = 0.006 in Fig. 4.20a, due to false routing of the signal from the silver, demonstrates
that there is at most a 3% background signal in the sample histograms. “Cross talk” in
the other direction is also quite small as evidenced by the fact that the asymmetry in
the reference spectrum (Acor=0.215) is consistent with the maximum experimental value
of 0.213 (obtained with Ag in both the sample and reference positions), indicating that
there is little Al,O3 signal in the reference histograms. False routing in this direction is
attributed to inefficiency in the TMj counter.

In traditional muon and positron counters the scintillating material is optically cou-
pled to a length of lucite, which acts as a light guide to a photomultiplier. Measurements
of the dc susceptibility on the BC 412 scintillator and the lucite indicated the presence of
a low temperature Curie-like contribution, as shown in Fig. 4.21. The present configura-
tion ensured that as much magnetic material as possible was removed from the immediate
sample surroundings. It is also vital to ensure that magnetic material is removed from
around the cryostat as well. For instance, the beamline collimators must be made of lead
or brass, not tungsten. Stainless steel also gives rise to an unacceptable magnetisation
and alters the field at the sample.

In a transverse field geometry this method makes possible accurate frequency measure-

ments in a sample relative to a known reference. The sample magnetisation is observed
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Figure 4.20: Fourier transform of the muon precession signal in a transverse magnetic
field of 1.45 T with a) Al,O; and b) Ag samples.
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Figure 4.21: d.c. susceptibilities of a) lucite and b) Bicron BC412 scintillator in an
applied magnetic field of 1.5 T.
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Figure 4.22: Relative precession frequency shift as a function of temperature in an applied
magnetic field of 1.45 T with silver in both the sample and reference positions.

as a shift in the muon precession frequency, as shown for a series of calibration measure-
ments on silver (Fig. 4.22). The reference material is typically a 0.25mm thick Ag foil
(99.99+% purity). Silver is chosen for a number of reasons: in TF measurements the
isotropic Knight shift at 300 K is well known (94.0 & 3.5 ppm) [113]. In addition, there
is nominally no muon spin depolarisation in LF measurements as muons diffuse rapidly
in silver, which has negligibly small nuclear moments and Korringa relaxation occurs on

a timescale too long for uSR.
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Muon Spin Relaxation

The development of tools to describe muon spin relaxation has closely followed the more
established theories applied to NMR data (see for example Refs. {120, 121]) and is thus
geared to systems of nuclear spins. The extension to fluctuating electronic moments, the
focus of this thesis, is not always straightforward.

The coupled motion of the muon and host spins, be they nuclear or electronic, are
intrinsically quantum mechanical in nature. As such, the behaviour of the combined sys-
tem should in principle be treated, as first illustrated by Celio and Meier [123]. However,
in most situations, one exception being muonium, the local environment of the muon
may be treated using a classical picture. The influence of the surrounding spins is ap-
proximated by a random local field. However, the classical picture is inappropriate if
the muon spin couples mainly to only 1 or 2 paramagnetic moments with low values of
spin (especially if S;o, = 1/2). There are marked differences in the long time behaviour,
particularly for some symmetry directions [123]. The limitations of a classical treatment
are beautifully illustrated by the simple spin system °F:u*:!°F formed by the spin 1/2

muon and two fluorine nuclei in the metal fluorides [97].

5.1 Static Internal fields

Consider a situation where a muon is thermalised in a sample and experiences a com-
pletely static internal magnetic field B = (B, By, B.) and zero applied field. Any given
muon spin will precess around its local magnetic field, its ¢ component evolving in time

as [122]:
o.(t) = P(0)-B+{P(0)-é—[P(0)-B](B-&)} cos (7,Bt)+[P(0) A& - B sin (v,Bt). (5.37)

67
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Figure 5.23: LF spin relaxation functions for isotropic static internal magnetic fields with
a) Gaussian and b) Lorentzian distributions.
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where P(0) is the initial muon spin polarisation and ¢ is the angle between B and the
¢ axis. Taking the ensemble average of o.(t) over a large number of muons (typically
107) which occupy magnetically inequivalent sites I with a probability f;, one obtains

the experimentally observable muon polarisation function:

P& =3 f / / / 0+(t)®:(B) dB; dB, dB,. (5.38)
I

In the case of a dense system of randomly ordered moments the field distribution ®;(B)
for each component B; of the internal field is often assumed to have an isotropic Gaussian

shape:

2 p2
<I>i(Bi)=Le [7“ ']

Joma T 2ae

where A?/~2 is the second moment of the distribution. In this case and assuming only

(5.39)

one muon site, Eq. (5.38) becomes

G..(t) = -:1,; + § (1- 2% 487, (5.40)

first derived by Kubo and Toyabe [125]. The relaxation in zero applied field initially
shows a Gaussian like decay, but is followed by a recovery of the signal to 1/3. This
recovery is unmistakable evidence for the static character of random fields. In a single
crystal the long time asymptote will no longer necessarily be 1/3 but will depend on the
dimensionality of the system, whether the spins are Ising, XY or Heisenberg like [126]
and the orientation of the crystalline axes relative to the inital muon spin polarisation.

In dilute systems (if less than ~ 10% of the atoms have a moment {127]) then the
field distribution is close to a Lorentzian [128, 129).

, a

where a?/+2 is the FWHM of the Lorentzian distribution. This yields

G..(t) = % + § (1— at)e™. (5.42)

Of course a truly Lorentzian distribution is unphysical as the second and higher moments
diverge. In addition, it leads to a depolarisation function with a non-zero slope as ¢

approaches 0. In a real material the distribution is truncated at some maximum field.
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ZF-uSR is a very direct way to measure the static internal field distribution in the
sample and the observed G..(t) is quite sensitive to the type of magnetic order present.
For example, in a system with long range order, where the muon always occupies the
same magnetically equivalent site and there are no dynamics, the second term in Eq.
(5.40) is replaced by an oscillatory signal cos (,Bt), even in zero applied field. However,
it should be noted that a distribution in the internal magnetic field acts to damp this
“spontaneous precession” and in practice it may not be observed. One of the most useful
aspects of ZF-uSR is that it works equally well on both powders and single crystals. This
is because the crystal orientation only affects the amplitude of precession and not the
frequency.

Inclusion of an external magnetic field along the muon polarisation direction is also
straightforward [130]. The most important effect is that the asymptotic value (t — o)
of G..(t) rises from 1/3 towards 1 as the magnitude of the applied field approaches and
then exceeds A/, (see Fig. 5.23).

The moments of the internal magnetic field distribution may be calculated, at least
in high transverse field, without having to find the eigenstates of the total Hamiltonian,
using van Vleck’s method of moments [131]. A knowledge of the n** moment then
gives information on the shape of the distribution and its associated resonance curve.
Experimentally, important contributions come from the wings of the distribution, which
may be dificult to observe. Thus only the secular terms of the dipolar Hamiltonian are
included, not only for simplicity but more importantly so that signals at 0, 2we due to non-
secular terms do not distort the calculation of the moments. The connection between ZF
and high TF relaxation rates is discussed by Hayano et al. [130]. In the former case both
the £ and ¥ components contribute, whereas in the latter the two directions perpendicular
to the muon spin are inequivalent (since one is along the applied field). Hence, the ZF
relaxation rate is a factor of 2/2 larger than that in high transverse field. However, there
is an additional effect: in zero field or the low longitudinal fields accessible with uSR, the
non-secular parts of the dipolar Hamiltonian may no longer be ignored. Therefore, the
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two should differ such that in ZF A/, = 1/5/2 times the van Vleck linewidth in TF.

5.2 Fluctuating Internal Fields

To attain thermal equilibrium there must be some interaction between the spin system
and the thermal fluctuations which define the temperature of the surrounding matrix or
lattice in which it is embedded. In such dynamic depolarisation processes spin entropy
is increased, by so called “spin-lattice relaxation”. In analysing uSR data, the effects of
magnetic fields which change on a timescale comparable with the muon lifetime, because

of fluctuating moments and/or muon diffusional motion, need to be considered. Different

Muon Spin Polarisation

Time (A7)

Figure 5.24: Zero field dynamic Gaussian Kubo-Toyabe functions for different field fluc-
tuation rates. The curves are calculated using the strong collision model.
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models have been assumed. For example, Gaussian-Markovian relaxation, which is per-
haps the correct model for fluctuating moments, assumes a Gaussian internal field dis-
tribution with a width characterised by A and a field autocorrelation function which
takes an exponential form exp(—t/7.). The strong collision model retains the Markovian
feature, i.e. there is no memory of the previous step, but the field now changes instan-
teously to a new value. This model is usually applied to muon diffusion and is discussed
by Hayano et al. [130]. The differences between the two models are small.

As a simple example, consider a harmonic oscillator, whose natural frequency w(t) is
modulated in some random way about wp. Thus w(t) = we+w;(¢), where w; (t) represents
the fluctuation in frequency, the average of which is zero. The resonance absorption
spectrum is broadened around wp by the random modulation, of amplitude A. Assuming
that w; (t) is a Gaussian-Markovian stochastic process, Kubo has shown [132] that in the
case of slow field modulations with correlation time 7., where A - 7. > 1, the relaxation
function of the oscillator is well described by a Gaussian function exp(—A2t?/2). The
resonant intensity distribution is given by its Fourier transform, also Gaussian. It turns
out that in this regime the intensity distribution reflects directly the distribution of
the modulation. In the limit of rapid modulation, the relaxation function has a form
exp(—A27.t+constant). The resonance line becomes more Lorentzian in shape with a half
width A2%7.. However, it should be noted that for |w — wp| > A, the shape deviates from
Lorentzian and approaches Gaussian. The problematic fact that a Lorentzian distribution
haé no finite second or highet moments is thus avoided. The second moment of the curve
is not influenced by the modulation. However, the fourth moment increases with 1/7..
This narrowing of the lineshape may be understood by considering the following: in
order for the modulation of frequency to be effective, a state should complete a cycle of
27 before the frequency changes. Hence the lifetime must be longer than 27 /w. If this
condition is not fulfilled, the modulation becomes averaged out. Bloembergen, Purcell
and Pound observed that the thermal motion of atoms in liquids and some solids leads
to such a narrowing of NMR lines, so called “motional narrowing” [133]. An analogous
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effect in paramagnetic systems is discussed by Anderson [134], where the amplitude of the
random frequency modulation is determined by the strength of the exchange interactions
present.

McMullen and Zaremba. [136] and subsequently Dalmas de Réotier and Yaouanc [137]
developed a quantum mechanical description of the muon spin depolarisation in terms of
the autocorrelation function of the local fields at the muon site(s). The interaction of the
muon spin with the solid is treated perturbatively. In systems where the Hamiltonian
is of the form of a steady part Ho plus a much smaller time-dependent term H;, the

equation of motion for the density matrix is given by

dp 1

If H; is 0 then
p(t) — e—i'Hot/hp(O)ei'Hot/h
so p*(t) is defined as p(t) = e~Hot/" p*(t)eot/® Hence, the Heisenberg equation describ-

ing the evolution of the system in the interaction representation is

WO _ L) 13000 (5.44)
Integrating,
p'(0) = 2 [ 10", M)t +57(0) (5.45)

If Hy = 0, p*(t) = p(0), i.e. a constant in time, so for small H;, p*(t) varies slowly. It

may therefore be replaced by p*(0) in the integral:

i rt t pt’
o0 = 'O+ 5 [, 15@Nat +/m2 [ [0, 7). Hi(¢))dt"de’. (5.46)

The complete Hamiltonian describing a single u* in a solid consists of a number of

terms, representing

e The solid in any externally applied magnetic field, independent of the coupling of
the electrons with a probe muon. By far the most important contribution to mag-

netic phenomena is due to electron-electron interactions resulting in, for example,
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direct or indirect dipolar and exchange interactions. The demagnetisation field,
which depends on the shape of the sample, gives rise to a macroscopic term in the
bulk magnetisation. The same is true of the Lorentz field arising in mean field
theory, where the microscopic interactions within a material are studied within the
“Lorentz sphere” only. Outside this fictitious sphere, their effect is modelled by an
effective bulk magnetic field instead.

e The charge on the muon exerts an electrostatic influence over the electrons and ions;
also if the surrounding nuclei have an electric quadrupole moment the electric field
gradient from the muon will in general cause nuclear electric quadrupole splittings,
discussed in more detail by Slichter [121].

e The u* spin also interacts with the electronic and nuclear spins through magnetic
hyperfine and/or dipolar couplings. The Fermi contact hyperfine interaction arises
from a non-zero electron spin density at the site of the muon with an s-wave com-

ponent in its wavefunction.
e Finally, the u* spin interacts with the applied field He,;.

The first term determines H,, the Hamiltonian operator of the host, while the third and
fourth are given by —u - B(r). The operator B(r) represents the microscopic field at
the position of the muon due to surrounding electrons and nuclei.

The hyperfine interaction between a nuclear spin and its own electronic shell is given
by the Hamiltonian Hgr = I - A - J, where J = L + S is the total electronic spin of
the atom and A is in general a tensor. For non-magnetic ions the hyperfine interaction is
due to the polarisation of filled shells and is proportional to the spin of the swrrounding
magnetic ions. In this case Hyr = I - £; A(R;)J;, summing over the neighbouring
magnetic ions. To give a net local field at the site of the muon or nucleus there must not
only be a non-zero electron density p(0) = |1,(0)|? # 0, but also a non-zero spin density
61 (0)]% — |45, (0)|2 # O. Integrating over the electron coordinates, the calculation of the
expectation value of the local field due to all the electrons requires a knowledge of the
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distribution of electron and spin densities in the atom, given by % and also in general, in
the whole crystal. Such calculations have been done using the Hartree-Fock method [138].

The coupling of the conduction electrons with the nuclear spins in metals is described
by the same Hamiltonian as in non-metals, but there are special features: the conduction
electrons are not localised and so have equal probability of being found in the neighbour-
hood of any nucleus. Thus each nuclear spin sees the magnetic fields produced by all
the conduction electrons simultaneously, an ensemble average. The conduction electrons
may also be polarised due to any dilute concentration of local moments present. For this
so called RKKY interaction the coupling is long range and oscillatory in nature, where
the coupling constant ~ cos(2krr)/r3, kr being the Fermi wave vector !. In transition
metal and rare earth elements the electrons of the inner s-shells may be spin polarised
as a result of their exchange interaction with the electrons of the uncompensated 3d or
4f shell. Such core polarisation results in a contact hyperfine interaction. In addition,
in metals and alloys the 4s conduction electrons are also polarised.

In these systems interactions between electronic spins on different atoms or ions be-
come extremely important and the overlap of electronic wave functions is described by an
exchange integral. While the exchange interaction is a manifestation of the Pauli exclu-
sion principle and electrostatic interactions, it can be written in terms of a scalar coupling
between spins which depends only on their relative orientation, as given by Eq. (2.4).
Note that the much weaker magnetic dipole-dipole interaction or an orbital contribution
to the electronic spin may lead to anisotropy and a dependence of the Hamiltonian on
the absolute spin orientation as well.

The local field affects the time dependent polarisation of the muon in two ways: by
introducing changes in the energy levels of the muon spin and by coupling it with the

lattice, which provides relaxation mechanisms. The field at the muon site B(r) may be

1Bloembergen and Rowland [139] discuss the form of the RKKY interaction in insulators, which is of
the form ~ exp[—+/(2m*E,)r/h] cos(k.r) />, where k. is the wave vector associated with the top of the
valence band and E, the energy gap between the valence and conduction bands. The main difference
arises from the exponential factor, which to a good approximation limits the interactions to nearest
neighbours.
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divided up into a static component with corresponding p* precession frequency w, and
a fluctuating component 6 B. The unperturbed part of the Hamiltonian Hg is defined as
Hs — (1/2)hw,0,, while H; = —(1/2)7y,0 - 6B.

Due to rapid thermalisation, the initial state of the system is taken to be a p* in a
spin state with polarisation P but otherwise in thermal equilibrium with the solid. The

corresponding density matrix of the combined muon plus crystal is

B _ ef (1+P-o)
P=pebu= g5

(5.47)

where o are the Pauli matrices. Since the residual polarisation of muons in thermal
equilibrium with a Boltzmann distribution is generally very small at the fields usually
applied, Tr{p,0.(t)} = 0 and hence

G..(t) = Tr{p#psUz(t)} (5.48)
- —;—Tr{psazaz(t)}. (5.49)

The time evolution of o, can be approximated using Eq. (5.46) and the muon polarisation

written as a perturbation expansion
G.(t) =G(t) +GR() +G2() +---. (5.50)

The lowest order term is G{9 = 1; the term linear in H; is proportional to the expectation
value (§B) and thus G = 0 is zero by definition. Finally, using the relation for a well
behaved function f

t 4 t
/0 dt /0 a"f(d — ") = /0 dr(t —7)f(7) (5.51)
where 7 =t/ — ¢, the third term is given by
PR = -2 [ it = 7fexp(iss Vs (r) + p(-iwyr)@_u (. (552

The previous equation is written in terms of the symmetrised local field autocorrelation

function,

Pap(T) = Ppa(-T)
- %[(5Ba(r)53,,+53,353a(r))], (5.53)
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where (A) indicates a thermal average

Trle~PM=A
-Tf[—e%E]—] (5.54)
of an operator A and
6B(t) = eMet/h§Be st/R, (5.55)

In the fast fluctuation limit the muon spin depolarisation is often well described by
an exponential function G,.(t) = G..(0) exp[—A(t)t], which may be expanded in powers
of A and compared with Eq. (5.50). Using this approach, it is thus possible to calculate
the muon spin depolarisation function from ®(7) directly 2. In the paramagnetic state it
is often assumed that the autocorrelation function has an exponential form

A2
D4 (1) =2_4(7) = 4-,;5 exp(—t) (5.56)
where A/~, is the rms of the instantaneous magnetic field distribution and v is the

inverse correlation time. In this case the muon spin relaxation rate is described by [141]

2

M)t = 5 [(wﬁ +12)t+ (Wl — V) (1 —e™ cos(w,t)) — 2vw,e™ sin(w,t)]. (5.57)

@2+
When the fluctuation rate v >> A, the relaxation function for each magnetically equiva-

lent muon site I can be described by a single exponential

e~ Mt (5.58)
with a relaxation rate:
2A%1/[
_— —— 5'
Al Vi +w? (5:59)

familiar from NMR. It is assumed that the field does not alter the fluctuation rate, nor
the internal field distribution.

As may be seen from Eq. (5.52), the relaxation is determined by the spectral density
of local field fluctuations at the muon Larmor frequency, illustrated schematically in

2The form of the correlation function is not in general trivial to calculate. If the interactions involve
a great many spins, it may be well described by a diffusion process in a spin continuum. In this case,
the correlation function must vary as 7-%/2, where d is the dimensionality of the system [140].
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Fig. 5.25. The fluctuation rate of the system is characterised by the highest frequency
with appreciable spectral weight and the area under the spectral density curve remains
constant as vy varies. Hence, in the regime where vy > w,, an increase in v results
in a decrease in A due to the decreased spectral weight at w,. Note that A; is only
weakly dependent on the applied field provided vy > w,. In other words, in zero field
the muon spin relaxation rate is only determined by A2/v for a Gaussian distribution.
For a Lorentzian field distribution in the fast fluctuation limit the muon spin relaxation
is only dependent on 4a/3 or equivalently does not show motional or exchange narrowing

of the resonance line.

Frequency

Spectral density of autocorrelation function

Figure 5.25: Spectral density plot for three values of fluctuation rate, illustrating the
variation of T, ! with vy in Eq. (5.59).

As expected for a perturbation expansion, the iterative approach outlined above is
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valid only for a limited range of parameters. It is an expansion in products of the internal
field and time. The former is described by a field distribution which has a second moment
on the scale of A/~,, while the relevant scale for the latter is the inverse fluctuation rate
v. The expansion is therefore expected to be valid for A/v < 1. Since the nth term in
Eq. (5.46) involves n integrations in time, its contribution is proportional to the volume
of integration (vt)”. It is therefore anticipated that the iterative approach accurately
describes the muon spin relaxation for vt < 1. The second order iteration formula and
the strong collision model with the numerically exact static function give the same result
when the muon jumping rate is sufficiently large. However, it can be shown that these
methods do not describe the depolarisation in detail given slow fluctuation or hopping

rates. Celio discusses a full quantum mechanical description [123, 124] for this regime.



Chapter 6

Y>Mo,_.Ti,O7 : a comparison with AuFe

Both randomness and frustration are thought to be essential criteria for the formation
of a spin glass state [23]. However, bulk magnetic susceptibility measurements{152] on
the pyrochlore YoMo,O- show strong irreversible behaviour below Tr = 22 K, charac-
teristic of spin glass ordering, even though the level of chemical disorder is small. In
this chapter our investigation of the low temperature magnetic properties of pyrochlores
YoMos_,.Ti.O7 using SR is discussed.

Spin glasses display sharp ordering features in their magnetic response but no such
anomalies in their thermal response. There is a transition from a state which has rapid
dynamic moment fluctuations to one where the moments are static or at most slowly
changing, but there is no long range order. Different techniques are sensitive to the
dynamics on various time scales. Hence it is still a matter for debate as to whether spin
glasses exhibit a true static phase transition or just a dynamical gradual freezing process
of the spins, where the the correlation length is large but finite. Since the pioneering
work of Cannella and Mydosh on AuFe [142] many random spin systems have been found
to exhibit a sharp cusp in their ac susceptibility at a temperature Tr. The spatial spin
correlation in these systems is basically random at any temperature, without staggered

magnetisation at any particular wave-vector, or equivalently, (S;) # 0 but
1 .
5 3(S5) explik - By) = 0 (6.60)
7

for N — co. However, some properties are history dependent below Tr. These charac-
teristics are thought to arise from a ground state characterised not by a single potential

well representing the uniform arrangement of perfectly ordered spins, as in a ferromagnet,

80
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but rather by an energy landscape with many nearly degenerate ground state configu-
rations separated by barriers of random height: a “many valley” picture. There are a
number of locally stable magnetisation configurations. When the system finds itself in
one of these valleys, it will exhibit properties specific to that valley, but not necessarily
equilibrium properties, which involve averages over all valleys with appropriate relative
thermal weights.

There are a number of theoretical models which attempt to describe the behaviour of
spin glasses and cope with the complexities in thermal and configuration space averages.
A discussion of these is beyond the scope of this thesis. However, the Edwards-Anderson
order parameter has played a central role in the development of theoretical ideas about
spin glasses. Edwards and Anderson [143] suggested an “ordering in time” based on the
replica method, widely used in the statistical mechanics of random systems. It makes
use of the identity

InZ = lim 2 =%

n—0

(6.61)

as a way around the difficulty of averaging the partition function Z. They introduced an
order parameter

Rea= tlirgo Nli_lgo[(sj (t0)S;j(to + t))av (6.62)

where ( ) denotes the thermal average for one impurity moment and [ ]o, represents the
spatial average over different spins. This is zero if the system is ergodic and non-zero if
the system is trapped in a single phase. The order parameter Qg4 measures the mean
square single-valley local spontaneous magnetisation, averaged over all possible valleys.
In contrast, the mean square local equilibrium magnetisation is given by [(S;)?]sy, Which
differs from Qg4 in having “intervalley” contributions. A picture emerges where each
spin is oriented along a preferred direction, about which it fluctuates. This behaviour

may be approximated by the autocorrelation function

[(S(®)S)/{[SO)P)ew = (1 — Q) exp(—2t) + Q. (6.63)

Each spin is assumed to be a vector sum of a static component /@S and a dynamic
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component /1 — @S fluctuating randomly at a rate v. It should be noted that the
Edwards-Anderson model is a mean field theory. The solution has some unphysical
properties and mean field theories sometimes predict phase transitions in cases where
none are observed. It is based on the assumption that a spin glass may be described by
spins connected by a random distribution of bonds and does not rely on the assumption
of RKKY interactions; in the former case [ ], indicates an average over a distribution of

exchange couplings. Hence it holds for a much larger class of systems.

6.1 AuFe : an archetypal spin glass

To serve as a comparison with YoMosO7, the conventional spin glass system AuFe (0.5%)
was examined. This material has already been extensively studied [10]. Nevertheless,
the region below 0.17r has not been well explored and since the uSR measurements of
Uemura et al. [25] there have been considerable improvements in spectrometers. In par-
ticular, the separate spectra apparatus described in Chapter 4 facilitates measurements
nominally free of any background signal. The pSR measurements were made at TRI-
UMF in a “He gas flow cryostat for temperatures above 2 K and in an Oxford Instruments
Model 400 top loading dilution refrigerator (DR) for lower temperatures. For the DR
measurements the foil was greased onto the cold finger and covered by a thin (0.025 mm)
Ag foil.

Above the spin glass transition at ~ 5 K, the data are well described by a phenomeno-
logical power exponential relaxation function G..(t) = exp[—(t/T1)?]. The results of fits
over the limited time range of 0.05 — 9.5 us are shown in Figs. 6.26 and 6.27. Above 50
K the data have been fitted to a single exponential function to simplify the analysis. The
values of 77! remain unchanged compared to fits where 3 is allowed to vary. It should
be noted that it is not possible to fit data to a stretched exponential function without
holding the corrected asymmetry constant, as the fitting routine will merely force § to
its lower bound and the corrected asymmetry to be unphysically large. As a result, the

signal amplitude has been fixed at 0.208(1) from a precession measurement in a small
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Figure 6.26: Muon spin relaxation rate 7! above the spin glass transition temperature in
AuFe (0.5%) measured in a longitudinal field of 0.005 T. The low temperature behaviour
in shown on an expanded scale in the lower panel.
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Figure 6.27: Parameter 3 above the spin glass transition temperature in AuFe (0.5%)
measured in a longitudinal field of 0.005 T. Above 50 K the data is fit to an exponential
function exp(—t/T}), while below the transition temperature Eq. (6.68) is used.

(0.001 T) transverse field at 275 K, a so called “indirect alpha calibration”.

The stretched exponential form is often used to analyse longitudinal field uSR data.
Note that this has no direct relation to stretched exponential relaxation of bulk magneti-
sation [29]. This behaviour indicates the presence of a distribution of relaxation times
and may indicate a distribution of fluctuation rates. For example, in dilute alloys it is
explained by the fact that the muon stops at different distances from the magnetic ion,
which gives rise to different Gaussian field distributions. Uemura et al. encountered such
a phenomenon in dilute alloys of magnetic ions in metals and modelled the observed

Lorentzian internal field distribution with a distribution of Gaussian field distributions,
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with second moments A?/~2:

2
p(A) = @% exp (—%) . (6.64)

Assuming that the relaxation GC,(t) at each site is an exponential function e** where
A7 is given by Eq. (5.59), the resultant relaxation function is found by averaging over

the signals from different muon sites:

G.lt) = [ GSp(a)aa (6.65)
9 1/2
- e (_ [_V‘j‘: ”:2] ) (6.66)

In real systems the integral must have finite limits which avoid both unphysically large
and small instantaneous internal fields. Computer simulations of muon spin relaxation
in dilute spin glasses by Fiory [144] are consistent with this “root exponential” shape.

At high temperatures (> 50 K) the behaviour of 77! shown in Fig. 6.26a is qualita-
tively similar to studies by Heffner [145] of muon diffusion in metallic hosts doped with
dilute concentrations of magnetic impurities, in particular Au with Gd and Er 1. The
increase in T;! above 50 K is attributed to muon diffusion. At temperatures of several
hundred kelvin, the muon encounters many Fe ions without trapping. As the tempera-
ture is lowered the muon moves more slowly and eventually no longer diffuses close to
a paramagnetic impurity within its lifetime. Between 50 and 7 K the muon appears to
be static. In this region, since the iron spins are fluctuating rapidly, the observed muon
spin depolarisation rate is at its lower resolution limit due to exchange narrowing, as
described in Chapter 5.

As the temperature is reduced below 7 K, the muon spin relaxation rate increases
rapidly to a maximum at 5.25 K. This is due to critical slowing down of the iron spin

fluctuations associated with approaching a continuous phase transition. Below 5.25 K

1There are constraints on such studies in pure non-magnetic metals: as the muon motion becomes too
rapid the nuclear dipolar field inhomogeneities are averaged to zero and no depolarisation is produced.
Furthermore, many host metals (like Ag and Au) have negligible nuclear moments and information on
muon diffusion is very difficult to obtain in the pure host. Introducing the larger electronic moment of
dilute impurities means larger diffusion rates can be studied independent of the host nuclear moments.
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Figure 6.28: Typical uSR spectra in AuFe (0.5%) in 0.005 T longitudinal field. The solid
lines are fits to Eq. (6.68).
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several distinctive features develop in the uSR spectra (see Fig. 6.28). There is a rapid
initial muon spin depolarisation, followed by a minimum and partial recovery and subse-
quent decay of the so called “1/3 tail”. The spectra have many features in common with
the Kubo Toyabe functions shown in Fig. 5.23 and are evidence of coexisting static and
fluctuating internal fields below the spin glass transition, consistent with the Edwards
Anderson model of spin glasses. As the temperature is reduced, the amplitude of the
initial rapid depolarisation increases and the position of the minimum moves back earlier
in time, indicating that the size of the static component increases at the expense of the
dynamic one in the manner of an order parameter. For a particular muon site such be-
haviour may be described as the product of the Kubo Toyabe function [Eq. (5.40)] due to
the static internal field A, = v/QA and Egs. (5.58) and (5.59), where Ay = /1 — QA is
the instantaneous local field of the dynamic part. The stochastic behaviour of the dipolar
fields at muon sites is essentially the same as that of the impurity spins themselves at all
temperatures [146]. In zero applied field, Uemura et al. [25] have calculated the overall

spin glass relaxation function by averaging over the muon sites to give

/ \/5 ( 2A2) [; + 3(1 QA2#?) exp (_ szt'-’)] .
2(1 - Q)A% A
1 exp((— [ﬂ;f] 1/2> )+
3 v
g exp ( [ 2¢2 + 4‘:/dt] v ) [1 - a2t? (a§t2 + 4—‘5‘3) _1/2] ,  (6:67)

where a; = v/Qa and ag = /1 — Qa. A calculation for finite longitudinal fields has been

G (t)

performed by the author in a similar way to yield
/2 2(1 - Q)A%t
SG Al -q)an
G') = / ( 2A2) &P ( V2 +w?
2A§ 1—exp At cosw,T | +
w2 2 #

4 00 2
22, (-— At ) sinw, 7 d'r) dA

3
w#O
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R 4a’vt 12 _2a§ v+l 1/2exp _ 4a3vt 1/2 4
v+ w? w2 \ 4aivt V2 + w2

m
1/2 2 1/2
2a2 V2 +uwl 4a3vt
—= cosw,t £ exp | — + a2t +
w? # (4a31/t + a2t2(v? + w2) v4+w?
3/2 1/2

2at /‘ V2 + w? 4a2vt
— | drsinw,T = e - at | 2.2 +
w3 Jo # \4advt + a272(1? + w?) P N
20¢ rt V2 + w2 4a3 2

drsinw, T £ exp | — d 272
w3 /o # (4a31/t + a272(v2 + w?) V2 +w? +aT

(6.68)

This makes use of the generalisation of Eq. (5.40) to include finite longitudinal fields,
as given by Hayano et al. [130]. Equations (6.67) and (6.68) are plotted in Fig. 6.30 for
different values of w, and A. Note that for Q < 1 the amplitude of the slowly relaxing
tail is less than 1/3 in zero applied field. The reduction in the amplitude of the tail
depends on the value of v. This may be seen by considering the limit » — 0, where the
dynamic contribution to the depolarisation becomes a constant and Eq. (6.67) simplifies
to the static Kubo-Toyabe function for a Lorentzian internal field distribution. The
non-relaxing tail then has an amplitude of 1/3 of the total signal.

Fitting Eq. (6.68) to the data between 2 and 5 K, the fluctuation rate of the resid-
ual dyanamic component and the order parameter ) may be extracted, as illustrated in
Fig. 6.29. It is interesting to note that v decreases monotonically as the order param-
eter increases. In conventional antiferromagnets such as MnFs, the magnon frequency
increases as the temperature is lowered [147], while the magnon population factor rapidly
decreases. Using Eq. (6.68) to analyse the spectra taken in the dilution refrigerator be-
low 2 K, the x? minimisation routine would not converge, as v is close to zero. However,
as may be seen in Fig. 6.31, the data are characterised by rapid depolarisation of 2/3 of
the signal, followed by a slowly relaxing 1/3 component. The relaxation rate of the 1/3
tail decreases steadily to zero as the temperature is lowered, such that the data is well

described by the generalisation of Eq. (5.42) (see Ref. [25]) at the base temperature of



Chapter 6. YoMos_.Ti.O; : a comparison with AuFe 90

a)
1.0 I ] I
w,= _
v=10A
0) i
Q=0.99

1.0 T u

GZZ(t)

0.0 1 ] ]

Time (A7)

Figure 6.30: Muon spin depolarisation functions appropriate for dilute spin glasses in a)
zero applied field [Eq. (6.67)] and b) longitudinal field w, = A [Eq. (6.68)].
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25 mK (Fig. 6.32). This indicates that, on the timescales probed by uSR, the internal
fields become completely “static” and characterised by a value of a, = 3.34(5) us™!. The
size of internal field, which scales linearly with impurity concentration, agrees reasonably
well with an estimate of the theoretical dipolar width by Uemura et al. [25] of ~ 5.6
us~! for a 1% sample of AuFe. The muon Larmor frequency associated with the applied
magnetic field of 0.005 T is thus a significant fraction of the internal field. The “tails” of
the spectra thus have an amplitude larger than 1/3rd of the signal, as expected from the
decoupling curves shown in Fig. 5.23. The main aim of the experiments was to study the
relaxation due to the residual dynamic component and hence it proved advantageous to
increase its amplitude.

It is appropriate to comment on the increase in Q with decreasing temperature. At-
tempting to extract critical exponents is prone to error, as the extent of the critical region
depends on many things. For an isotropic Heisenberg system it is on the order of £1/z,
where z is the number of nearest neighbours and may thus range from 8 — 25% of the
transition temperature. Nevertheless, it is interesting to note that the behaviour in the

order parameter is well described by the function

Tp — T)ﬁ
TF
over the whole range between 5 and 2 K, as shown in Fig. 6.29b. In this instance 3 is the

as = ag ( (6.69)

zero field magnetisation critical exponent, not to be confused with the parameter used in
fitting to a stretched exponential function. Interestingly, the value of 8 of 0.50(2) agrees
well with Monte Carlo simulations by Ogielski [148] for a three dimensional Ising spin
glass with a +7 distribution of nearest neighbour bonds, as well as critical exponents
based on finite size scaling calculated by Bhatt and Young [149]. Experimentally, values
of 8 for various spin glasses are more scattered, ranging from 0.2 — 1.4 [10].
Surprisingly, after all these years the whole picture of dilute metallic spin glasses has
recently been called into question. Neutron scattering measurements by Werner [150]
show evidence for sharp magnetic peaks in some dilute spin glasses, indicating the pres-

ence of antiferromagnetic spin density waves, as well as small ferromagnetic clusters
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arising from atomic short range order. Such spin density waves were first predicted by

Overhauser [151]. These findings and their interpretation are currently subject to debate.

6.2 Y2M0207

Despite its low level of disorder, the magnetic behaviour in Y;Mo207 is found to be
close to that observed in conventional random spin glasses. Specifically, irreversible
behaviour is observed in field cooled and zero field cooled bulk dc magnetic susceptibility
measurements below Tr =~ 22 K [152]. A Curie-Weiss fit to high temperature (300-1000
K) susceptibility data [81] yields Ocw = —200 K, indicating strong antiferromagnetic
interactions. It should be pointed out that estimates of the exchange coupling based on
©cw may vary by orders of magnitude. Raju et al. [152] extract a value of Ocw = —28
K using measurements below 300 K. High temperature measurements are thus clearly
crucial.

A large static internal magnetic field with a very broad distribution develops below
the spin glass transition temperature T, such that no coherent muon spin precession is
observed. The data are not consistent with superparamagnetism, where no discontinuity
in the dc susceptibility is anticipated [153]. Nor is a quantum spin liquid a possible
explanation, where the ground state is a fluid of spin pairs correlated together into

singlets [43]; in that case no large internal magnetic fields would be expected for T’ < TFp.

The uSR measurements were made at TRIUMF in a ‘He gas flow cryostat for temper-
atures above 2 K and in an Oxford Intruments Model 400 top loading dilution refrigerator
(DR) for lower temperatures. For the DR measurements the pressed polycrystalline pel-
lets were varnished onto an Ag plate and covered by 0.025 mm thick Ag foil; the Ag
plate was then bolted to the cold finger. The present measurements were made in a
small longitudinal field of 0.02 T to quench any effect from static nuclear dipolar fields
in the sample holder, whose associated spin relaxation would have complicated the ob-

served spectra, giving rise to an additional signal like the Kubo Toyabe function shown
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Figure 6.33: Typical longitudinal field uSR spectra in YoMo.O7 at 27.5 K.

in Fig. 5.23.

Figure 6.33 shows several typical uSR spectra in YoMo,07. Above Tr = 22 K the
observed spin relaxation is attributed to rapid fluctuations of the internal magnetic field
due to Mo*" moments in the paramagnetic phase. When the fluctuation rate v is much
greater than the internal field A, the relaxation function for each magnetically equivalent
muon site I can be described by a single exponential e~** with a relaxation rate given by
Eq. (5.59); the experimental G..(t) is a convolution of such functions over the distribution
of A. The theoretical relaxation rate is only weakly dependent on the applied field
provided vy >> w,; this is consistent with the absence of any observed field dependence in
the spectra for temperatures well above Tr. Above the transition temperature Fig. 6.34a
shows the average muon spin relaxation rate in YoMo,O- obtained from fits to a stretched

exponential relaxation function

G..(t) ~ exp[~(t/T1)?] (6.70)
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over a time interval of 0.01 to 10 us, where A = Ty!. The full corrected asymmetry,
which includes a contribution from a silver background signal, is held constant above 22
K at a value of 0.20(1) found from an “indirect alpha calibration” at 70 K. Below the
spin glass transition temperature the asymmetry was held constant at a value of 0.20/3,
fitting the data to a stretched exponential function between 0.1 and 10 us.

Below ~ 50 K, P, (t) deviates somewhat from a single exponential (see Fig. 6.34b), the
observed value of B decreasing with decreasing temperature. Similar behaviour has re-
cently been observed in other dense spin glasses like AgMn and AuFe [29] and is discussed
in greater detail in the next section. While non-exponential relaxation is anticipated in a
dilute spin glass due to the distribution in A, 8 is expected to be temperature independent
at a value of 1/2.

In the paramagnetic phase above 50 K one may use Eq. (5.59) to estimate the aver-
age fluctuation rate of the moments. For example with A/, = 0.061 T (see below) one
obtains the fluctuation rates shown in Fig. 6.35. Note the sharp rise in the average T7*
and corresponding decrease in the Mo** fluctuation rate as one approaches Tr = 22 K.
These values are within an order of magnitude of the relaxation rate of the thermal spin
fluctuation spectrum measured by inelastic neutron scattering at Q = 0.44 A~! [154).
Considering the statistical error of roughly 19% in the results from neutron scattering
and the systematic errors in both measurements, the agreement is reasonable. From this
it may be concluded that both techniques are sensitive to the same quantity in this ma-
terial, i.e. the Mo** moment fluctuation rates. Note that the uSR results are averaged
over all Q. Above 55 K the scattering function S(Q,w) displays a rather broad frequency
spectrum. In the temperature regime between 45 K and the spin glass transition, low
energy spin fluctuations are enhanced and the frequency spectrum progressively sharpens
as the temperature is reduced. There is no further development in spatial correlations
below ~ 40 K. At lower temperatures it is the temporal correlations which evolve in-
dependently; in other words, the ¢ and w dependences become decoupled. This picture

recurs in a number of geometrically frustrated systems. The downshift in the spectral



Chapter 6. YoMoo_.Ti,O7 : a comparison with AuFe 98

weight of fluctuations is another common theme. It is interesting to note that this tem-
perature regime, i.e. below 40 K corresponds to the onset of non-exponential muon spin

relaxation. = Recent measurements of the dc magnetisation of YoMo,O; show a diver-
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Figure 6.35: Fluctuation rate as a function of temperature in YoMo;O7. The trian-
gles indicate values from inelastic neutron scattering measurements by Gardner et al.
(Ref. [154]). The values obtained by uSR (square symbols) are extracted using Eq.
(5.59) from measurements in a longitudinal field of 0.02 T. The area to the left of the
dot-dashed line indicates where the concept of a single fluctuation rate is likely no longer
appropriate.

gent non-linear susceptibility x3 at T =~ 22 K [155, 156], which is a signature of a true
thermodynamic spin glass phase transition [157].

The muon spin relaxation function below Tr (see Fig. 6.36) is characterised by rapid
damping of 2/3 of the initial polarisation, followed by slow relaxation of the remaining
1/3 component. This is a characteristic signature of a highly disordered magnetic state

in which the moments are quasi-static on the timescale of the muon lifetime. The curves
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Figure 6.36: a) Short time behaviour of the muon polarisation in YoMoy0O7 at 2.32 K
and b) the depolarisation of the 1/3 component. The solid, dashed and dot-dashed lines
are fits which are described in the text.
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Figure 6.37: Simulation of the magnetic field at the muon site (0.16,0.16, —0.17) assuming
randomly oriented spins of magnitude 2.8 up. For comparison, the solid and dashed lines
indicate internal fields distributions with Gaussian and Lorentzian Z,9, 2 components
respectively.

show fits of the data at 2.32 K to Egs. (5.40) (solid line) and (5.42) (dashed line), modified
slightly to include the small external field of 0.02 T and multiplied by an exponential
function. The dot-dashed line is the function

G..(t) = % exp(—Xt) + % exp(—at?) cos(2n ft). (6.71)

appropriate for modelling systems with long range order. The fit to Eq. (5.40) gives
a value \/@ = A/v, = 0.061(2) T, which corresponds to an average field strength
J(B) = \/8/xA/7, = 0.097(3) T. Note however that the dip in Gi.(t) at 0.036 ps is
not as deep as predicted by the modified Eq. (5.40), indicating the distribution of internal
fields is more complicated than a single Gaussian. Nor does a Lorentzian internal field
accurately describe the data. The overall best fits were obtained using Eq. (6.71), where
o = 38(2) us~! and f = 13(1) MHz. This implies that the static internal fields within
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Figure 6.38: Resultant muon spin depolarisation function given the static internal field
distribution shown in Fig. 6.37 (dot-dashed line). The solid and dashed lines are Egs. 5.40
and 5.42 respectively using the values of A, a shown in Fig. 6.37.

Y2Mo,07 average at 0.096 T, but have a broad distribution around that value.

Figure 6.37 illustrates the results of attempting to model the internal field distri-
bution. The magnetic field at the muon site (0.16,0.16,—0.17) calculated in Chapter
3 due to surrounding dipoles is shown. The corresponding muon spin depolarisation
functions are shown in Fig. 6.38. Including the contribution due to moments within a
cube of 4 conventional unit cells on a side, point like dipoles with effective moments of
gm,u 8 = 2.8up expected for S = 1 Mo** ions were randomly oriented on Mo**
sites. This field distribution is more sharply peaked than the Gaussian function shown
in Fig. 6.37 and A/, = 0.25 T does not agree with the experimentally observed value.
However, the discrepancy may be partially explained by noting that Raju et al. [152]
determine the effective moment to be 1.7 upg below 300 K, a reduction ascribed to spin-

orbit splitting effects of the 4d electrons [158]. In addition, a more involved model of the
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static internal field distribution would have to include the effect of spin correlations in an
analogous manner to the work of Walker and Walstedt. In their classic paper Walker and
Walstedt [159] investigated dilute RKKY coupled spin systems using computer simula-
tions and showed that the effect of short range correlations is to broaden the distribution
of exchange fields by ~ 50% for equilibrium configurations and diminish the number of
spins with very small fields.

The three relaxation functions described above have been generalised to include a fluc-
tuating component to the internal field, which results in (among other things) relaxation
of the 1/3 tail. As may be seen in Fig. 6.36b, this component is again better described
by a stretched exponential function. Below the spin glass transition temperature only
this component has been analysed, fitting the data to a stretched exponential function
between 0.1 and 10 us. As shown in Fig. 6.30, in a conventional dilute spin glass the
amplitude of the “tail” is less than 1/3 in zero field when the spin glass order parameter
is significantly less than 1. This of course depends on the value of v. By holding the
corrected asymmetry constant at 1/3 of the full signal below T, it is therefore possible
that a slight systematic error is being made. It would be most pronounced just below T,
where the static internal fields are small and comparable with the applied field. However,
at temperatures of < 0.1TF it is certainly a good approximation and the data was well
fitted by using this model. A complete description of the muon spin depolarisation in
Y>Mo,07 would involve the exact shape of the static internal field distribution and how
it is decoupled in the applied field of 0.02 T, as well as the functional form of the spin
glass autocorrelation function. It should be pointed out that the small residual relaxation
rate [Ao =0.006(1) ps~!] at the lowest temperatures is at the resolution limit of the uSR
technique.

The initial amplitude of the slowly relaxing tail increases as the ratio between the
external magnetic field and internal static field, as shown in Fig. 6.39. This dependence
was used to estimate the magnitude of the static component of the internal magnetic field

at various temperatures below the spin glass transition, assuming both Gaussian and
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Figure 6.39: Characteristic spectra in YoMo0,0- in various longitudinal magnetic fields
at ~ 40 mK. The increase in the amplitude of the long time tail with field is evidence of
a static internal field distribution.

Lorentzian field distributions (see Fig. 6.40). The static component becomes larger with
decreasing temperature at the expense of the fluctuating component. Within the limits
of the uSR technique, the “1/3” tail is completely non-relaxing by 40 mK (Fig. 6.39).
Hence the spin glass-like behaviour observed in YoMo,O; closely resembles that found
in conventional random spin glass systems. It remains unclear whether this transition
is intrinsic to the pure material, i.e. “topological” in nature, or driven by residual
disorder. Very recent XAFS results described in Chapter 3 suggest that the spin glass
phase is nucleated by 5% lattice disorder, which gives rise to a distribution of exchange
interactions. However, the quantum mechanical mean field theory of Sherrington and
Southern [160] for Ising spins would imply that disorder in the exchange coupling on the
level of 20 — 25% is required to reproduce the observed transition temperature [83]. The
point charge crystal electric field calculations described in Chapter 3 indicate that the

lowest energy levels of the Mo** ion in its pyrochlore environment are a ground state
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Figure 6.40: Static internal field as a function of temperature in Y,Mo20; assuming
Gaussian (dashed line) and Lorentzian (solid line) internal field distributions. The quoted
values are from fits to Eq. (6.69).

singlet and then an excited state doublet, suggesting that the ion is slightly XY like.
Given N spins in the system, of the order of Avogadro’s number, the associated planar
anisotropy means that only disorder at the level of N%/® would be required to drive the
system into a spin glass state [2]. This also implies that the ratio of the exchange coupling
to the energy level splitting is larger than the critical value necessary for a singlet ground

state system to undergo a phase transition.

6.2.1 Spin glass autocorrelation functions

In simple models on non-random magnetic systems, the spin autocorrelation function
typically exhibits decay with an exponential time dependence outside the critical re-
gion [161] above its transition temperature. There have been a number of studies both
above and below the spin glass transition to determine the form of the autocorrelation

function in random systems. The first using uSR were done by MacLaughlin et al. [27]
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at temperatures < Tr, where power law behaviour was observed. The muon spin de-
polarisation rate varied with field as H~046%095 for AgMn spin glasses below the glass
transition (0.30 < T/Tr < 0.66). The time dependent component of the autocorrela-
tion function was found to decay as t~*, where z ~ 1/2 below Tr. This behaviour is
consistent with infinite range mean field theories of spin glass dynamics [165] and Monte
Carlo simulations [166]. This latter theory, due to Kirkpatrick, predicts an exponential
decay of correlations above Tr and an algebraic decay below with an exponent which
decreases with temperature from the value of z = 1/2 at Tr. Subsequently, the classic
measurements of Mezei and Murani [162] using neutron spin echo, which probes the au-
tocorrelation function directly, have been successfully fitted to both power law [163, 146]
and stretched exponential forms [164]. Ogielski [148] proposed the empirical formula

2= ¢/7)]

)
= (6.72)

q(t) =

above Tr and a power law form ¢(t) = ¢t~ below to describe the results of his Monte
Carlo simulations of three dimensional short range Ising spin glasses both above and
below the transition temperature. All four parameters ¢, z, 7 and 8 may depend on
temperature. The Kohlrausch or stretched exponential component results from averaging
over approximately uncorrelated contributions of localised fluctuations which are due to
local variations of the density of frustration in an inhomogeneous lattice [148].

The seemingly inconsistent conclusions as to the form of the spin glass autocorrela-
tions may in part be due to the non-trivial form of the muon spin depolarisation function
below Tr. In the spin glass state both dynamic and static fields contribute to the re-
laxation, complicating the interpretation of the data. The local dipolar fields contribute
to the total static field seen by the muon, in addition to the applied field. Campbell et
al. [29] studied AgMn and AuFe alloys above the glass transition and found a stretched
exponential form for the local spin autocorrelation function by Laplace transforming the
observed stretched exponential muon spin relaxation functions. If there were a unique
relaxation time 7 for all spins at each temperature, because of the geometrical distribu-

tion of internal fields within a dilute system, £ should be somewhat less than one and
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temperature independent. In reality, 8 is often found to decrease as the temperature
approaches Tr from above, reaching a value of 1/3 at the transition [30].

Extensive work has also been undertaken by Keren et al. [30] on dilute spin glasses.
Zero and longitudinal field uSR measurements on AgMn (0.5%) above the spin glass
transition showed that the muon polarisation obeys a time-field scaling relation P(H,t) =
P(t/H") which depends on the form of the spin-spin autocorrelation function: if v <1
then v = 1 —z, implying a power law or cut off power law (CPL). However, if ¥ > 1 then
v = 14y and the autocorrelation function decays as a stretched exponential. The power
law form is time scale invariant and dynamical modulations should be observed in any

time window. The CPL is time scale invariant only at times much shorter than 7, where
q(t) ~ ct™"f(t/7). (6.73)

The uSR spectra between 0.0125 and 0.4 T on AgMn at 3.2 K are found to collapse onto
each other for v = 0.75(5). The value of 4 may change with temperature. Analogous
measurements on YoMo,O- by the author are shown in Figs. 6.41 and 6.42, where scaling
is observed for v = 0.63(0.19). In particular, it is possible to fold all the longitudinal
field data into one universal plot, consistent with Keren'’s results. This indicates that the
spin autocorrelation function in Y,Mo0,0O+ has either a power law or CPL form and hence
another aspect of the behaviour of this material is very similar to traditional random
spin glasses. It is not possible to describe the field dependence in terms of Abragam’s
formula 5.59, where in the high field limit the relaxation rate would scale as H=2.

Note that no specific form for the depolarisation function has been assumed thus far.
Keren et al. have shown [167] that it is possible to relate power law autocorrelation
functions with stretched exponential muon spin depolarisation. An expression of the
form

P(H,t) = Pyexp[-X(t)t] (6.74)

is assumed, where

A= [ ‘(¢ = )q(r) cos(w,T)dr. (6.75)
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Given the autocorrelation function

(S5(0)- S5(0) — (S3(00) - S;(0) = a(t) = 2= e[~ (670

y is set to O for simplicity and the crossover time 7, is introduced so that ¢(t) is properly
normalised at ¢ = 0. However, this quantity is expected to be of the order of 10~13—10—11
s. Eq. (6.75) must be solved numerically {167] but in zero field it may be integrated by
dividing it into two parts: the first from 0 to 7.,, the second from 7, to . At the end of
the calculation we set Teo — 0 as only the behaviour at times much greater than 7, are
of interest in a uSR experiment. In this case,

2A27542-%

A= e a0

+O(87®). (6.77)

The second term comes from the integral over early times and is typically 10% of the
first term for z > 0.5. The relaxation rate thus itself becomes a power law function

of time. Therefore the onset of non-exponential muon spin relaxation in YoMo20O7, as
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shown in Fig. 6.34b, likely corresponds to the crossover of the autocorrelation function to
an exotic form as the spin glass phase is approached. In the regime between ~ 45 K and
the transition temperature, it is no longer appropriate to think in terms of a single spin

fluctuation rate. Rather, spin dynamics begin to develop over a wide range of timescales.

6.3 Titanium substituted Yttrium compounds

The results of similar uSR experiments done in a longitudinally applied field of 0.02 T on
YoMo,; 6Tip.407, YoMo; 2Tig 807 and YoMoTiO; are shown in Figs. 6.43, 6.44 and 6.45,
where the diamagnetic Ti*t ions are substitutional impurities on the B site, thereby
introducing random disorder. In the paramagnetic phase the spectra are fitted to a
stretched exponential function over a time range of 0.01 to 9.5 us, holding the corrected
asymmetry constant at a value found from high temperature alpha calibrations. In the
ordered phase only the 1/3 component is analysed out from 0.1 us. It proved necessary
to hold the parameter 3 constant below 2 K in the Y,Mo,; ¢Tip.4O7 and YoMo;2TiosO7
samples.

The most remarkable feature in the data is the presence of a sizeable residual spin
relaxation rate at low temperatures, which is not evident from previous data on conven-
tional metallic spin glasses like CuMn [25] or AuMn [163]. This is direct evidence for a
larger density of magnetic excitations near zero energy than in conventional random spin
glasses. The muon spin depolarisation rate is roughly temperature independent below 1
K, at values which increase with increasing impurity concentration (see Fig. 6.46b). The
mechanism giving rise to this behaviour is possibly enhanced by the addition of random
disorder. As shown in Fig. 6.47, the rapidly relaxing 2/3 component is also affected by
the dilution as expected, since the internal field distribution narrows with decreasing
molybdenum concentration. In particular, the dip observed at early times in undiluted
Y2Mo,07 becomes increasingly “washed out”.

The spin freezing temperatures, as seen by a peak in 17 ! are in agreement with

magnetic susceptibility measurements, summarised in Fig. 6.46a. As shown, there is a
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decrease in the transition temperature with increasing impurity concentration. While
this is observed universally in conventional magnets [168], as T, scales with the number
of nearest neighbours, it is not clear that this approach is appropriate for describing
spin glasses, where the order parameter is not a simple quantity. It is important to
realise that the fact that the transition temperature decreases with increasing dilution
has profound implications as to whether the spin glass transition in YoMo,O7 is due
to disorder and then is robust to disorder. Minimising the disorder does not make the
transition disappear; it has now been observed in a variety of nominally pure samples.
In addition, site dilution appears to have different effects compared to bond disorder.
Muon spin relaxation results from the exchange of energy with magnetic excitations.
A first order process, in which the muon absorbs or creates an excitation with an energy
equal to the muon Zeeman energy, is normally suppressed in conventional systems with
LRO, where the density of states p(E) — 0 as E — 0, since it requires excitations near
zero energy. In principle, both first and second order muon spin depolarisation processes
are present in spin glasses, since p(FE) is thought to be only weakly dependent on energy.
In a second order (Raman magnon scattering) process involving inelastic scattering of an

excitation, application of Fermi’s Golden rule gives:

T /0 “dE <n (kBiT» <n (51—,) + 1> IM2(E)pX(E) (6.78)

where the muon Zeeman energy has been neglected and M(F) is the matrix element for
inelastic scattering of an excitation of energy E causing a muon spin flip. In a spin glass,
n(E/kgT) is the probability distribution (assumed to be Bose-Einstein) for “intravalley”
excitations, i.e. spin excitations within one of the macroscopic number of metastable
states or valleys. Intervalley transitions, involving reorientations of finite sized spin clus-
ters, are thought to be important only in the mK range [169], where T; ! is independent
of temperature in these samples. From Eq. (6.78), the temperature dependent behaviour
of T7! is primarily determined by the energy dependence of p(E)M(E). The low tem-
perature linear specific heat observed in YoMo0,0O; [152] suggests p(E) is flat or at least
weakly dependent on energy for E > T. Note however that a peak in the density of
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states is still possible near T = 0. If p(F) and M(FE) have power law dependences with
powers | and m respectively, then Eq. (6.78) implies that 77! varies as T2+™+! below
Tr. In other words, below Tr, T7! decreases gradually as magnetic excitations freeze
out.

The large residual 77! observed in the titanium substituted compounds establishes
that there is a non-zero density of low energy excitations, which cause relaxation either by
a first or second order process. Computer simulations by Ching et al. [170] on insulating
Heisenberg spin glasses Eu,Sr;_.S (z = 0.54 and 0.40) have indicated that the density
of states p(E) may be peaked at low energies and p(0) finite.

As described in Chapter 2, Villain has considered the effect of disorder on the py-
rochlore lattice qualitatively [2]. More recently, Moessner and Berlinsky [171] have inves-
tigated the effect of magnetic dilution on the magnetic susceptibility of the pyrochlores,
using Monte Carlo simulations for a system of classical Heisenberg spins with nearest
neighbour interactions. The spin-spin correlations in this system are always short ranged
and a small amount of dilution does not affect this property, inducing neither ordering
nor glassiness. However, this ceases to be the case when 1/4 of the sites are vacant.
At any non-zero dilution, the low temperature magnetic behaviour is dominated by the
tetrahedra where only one magnetic ion is present (a p = 1 unit). The effect of a magnetic
field on the total spin of a unit is the same for all p > 2. There is merely a difference
in the magnetic susceptibility per spin, as the total magnetisation is shared between a
total of p < 4 spins in a diluted unit and is proportional to the applied field. In striking
contrast, an infinitesimal field suffices to align the single spin in a p = 1 unit and hence
the susceptibility is infinite at 7" = 0. In the full system at low dilution, a unit withp =1
in general corresponds not to an isolated spin as it also belongs to a second unit with
p > 0. In this regime, there are sufficiently many undiluted tetrahedra to generate an
extensive ground state [49] and a finite density of zero energy modes, i.e. the possibility

of reorienting local spin clusters at no cost in energy. As a result, spins separated by a
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distance larger than the size of such clusters are essentially uncorrelated at all tempera-
tures. Since the spins in the p = 1 units are well separated at low dilution, they behave
like paramagnetic spins even though they are not isolated. This results in a Curie-like
contribution to the susceptibility, with the most dramatic changes in x~! occuring below
T/J < 0.02.

It is possible to compare the spin lattice relaxation rate 77 with the dynamical

susceptibility of a system through the fluctuation-dissipation theorem:

T « kBT}}E},Z %, (6.79)
7
where
x"(g,w,T) = x'(3,0,T) f(q,w, T)luwm (6.80)

by the Kramers-Krénig relation and f is the spectral function. Since the frequencies
probed by the muon, set by its gyromagnetic ratio, are on the order of MHz and the
characteristic frequency scale of the electronic moments is in the THz range, taking the
limit w — O is justified. Note that there is a quasi-elastic contribution to x’ due to
diffusive modes [172]. If it can be assumed that there is no temperature dependence to
the spectral function, then a Curie-like susceptibility x’ may be associated with tem-
perature independent spin relaxation. Even though a model with classical Heisenberg
spins with nearest neighbour interactions does not predict a spin glass transition, given
completely undiluted tetrahedra, the idea that the p = 1 units behave like paramagnetic
spins may have some relevance to explaining the behaviour below 1 K in the substi-
tuted yttrium pyrochlores. Similarly, paramagnetic contributions to the dc susceptibility
of the frustrated spinel ZnCr; 6Cap404 below its spin glass ordering temperature [19]
are attributed to unfrozen “entropic” clusters of spins. Susceptibility measurements at
millikelvin temperatures might indicate whether a similar mechanism is present in the
pyrochlores.
It should be emphasized that previous uSR experiments on conventional spin glasses [25,

163] found a strong temperature dependence of 77! in the temperature range T/Tr €
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[0.1 — 1.0], with no sign that Tj! was approaching a limiting and temperature inde-
pendent value limy_o[T7 (T)] above the experimental uSR resolution limit. In any
case, these experiments did not probe the temperature range T/Trp < 0.1. It is in-
teresting to note that other spin glasses like Cd;_;Mn,Te (0.27< z < 0.65) [173] and
Lay 04Sr0.06CuOy [174] show indications of low temperature spin dynamics; but again,
these insulating Heisenberg spin glasses have not been studied in the important region
below 0.1T7. The geometrically frustrated kagomé lattice system SrCrsGayO19 has also
recently been studied using uSR [34]. Dynamic spin fluctuations are observed without
static freezing, even at 100 mK, well below Tr = 3.5 K. There is, however, some contro-
versy over SrCrsGasOy [58, 175), as it has been suggested that this material does not
show a thermodynamic freezing transition at Tr [175]. In this case, one would expect
to find spin dynamics persisting down to zero temperature. This is not the case for
Y>Mo,07, where there is strong evidence for a collective freezing transition at T as seen
in the critical slowing down observed by uSR and the divergent nonlinear susceptibility.
In the YoMoo_.Ti;O7 (z # 0) compounds there is convincing evidence for a limiting
temperature independent Tj! in the temperature range T/Tr < 0.1, limr_o[T7 ' (T)]
growing with increasing z. Interestingly, both the classic random spin glass AuFe and
Y>Mo,07, which has many spin glass-like features but only very low levels of chemical
disorder, have internal field distributions which are completely static on the timescale
of uSR below 0.17%. prever, the systematic re-introduction of disorder into YoMo2O7
through titanium substitution enhances the density of states of the low energy excitations
responsible for low temperature relaxation. It is also important to note that minimising
the site disorder does not make the phase transition disappear; rather the transition
temperature increases as the disorder is removed. This suggests that while the effects
of bond disorder may differ, the spin glass transition in YoMo,O7 is not driven by site
dilution.
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6.3.1 Y,Ti;O-

Y,Ti,O; was studied as a control, to isolate the effects due to magnetic ions. Both the
Y3+ and Ti** ions have closed electronic shells and hence no permanent moments. The
typical transverse field spectrum shown in Fig. 6.48b is very similar to that of silver. The
silver reference has a corrected asymmetry of 0.2272(5) and a relaxation rate of 0.012(5)
ps~1, while the Y,Ti;O7 has values of 0.2287(8) and 0.006(1) ps~' respectively.  In
general, the muon may emerge from thermalisation as an apparently bare y* in metals or
sometimes in a muonium like state in semiconductors and insulators. The full amplitude
of the signal in Fig. 6.48 is observed at the Larmor frequency of the muon: there is no
evidence of any “missing fraction” due to prompt muonium formation, a process which
occurs while the muon is still losing its initial kinetic energy (see the thesis of Morris [108]
and references therein) 2.

There is also the possibility of delayed muonium formation, which depends on the
transport of radiolysis electrons to the muon under the influence of their mutual Coulomb
attraction and any external fields after the muon has come to thermal equilibrium with its
surroundings. The muon is thought to lose kinetic energy near the end of its track by the
creation of free electrons, ions and radicals in a radiation spur. The thermal muon in the
vicinity of the terminal spur could then form muonium by simply capturing a free electron
from among the spur products. The associated time over which the electrons diffuse
to the muon can be large enough to have an observable effect on timescales accessible
by uSR if the initial separation is great enough and/or the electron mobility is low

enough. The elapsed time between muons entering the sample and the arrival of electrons

2At high energies of several MeV the muon should behave like any fast charged particle and undergo
energy loss by Bethe-Bloch ionisation of the medium. Charge exchange collisions become important
when the kinetic energy has dropped to several tens of keV, comparable with the orbital velocity of
electrons of the medium. In this regime, the muon undergoes a rapid series of several hundred electron
pickup and stripping cycles, shedding energy with each ionisation process. At an energy of order 100 eV
the fraction of muonium formed is a function of the relative electron affinities of the muon and atoms of
the sample. In materials with ionisation potentials smaller than that of muonium (13.5 V) most muons
are expected to emerge from this stage as hot muonium atoms. Further thermalisation of both muons
and muonium atoms will then continue by elastic and inelastic collisions. In such a process, muonium is
formed within a few tens of picoseconds of entering a sample.
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Figure 6.49: Typical uSR spectra in Y>Ti,O7 in a longitudinally applied field of 0.02 T.
Note that the vertical scale starts at a muon spin polarisation of 0.75, i.e. the relaxing
signal is small. This small effect is attributed to residual magnetic impurities (see text).
at the muons will have some distribution, so the bare muon spin polarisation will be
converted to muonium polarisation over a range of times. In principle therefore, delayed
muonium formation is experimentally observable in the shape of the muon spin relaxation
function as a rapidly damped signal. Such two component spectra have been observed
in Y,Ti07 (see Fig. 6.49). The asymmetry of the fast relaxing signal is small, as may
be seen in Fig. 6.50 and the corresponding relaxation rate has no obvious temperature
dependence. While such behaviour could be interpreted as evidence of delayed muonium
formation 3, magnetisation measurements (see Fig. 6.51) in 0.02 T indicate a small Curie-

like contribution at low temperatures, likely due to paramagnetic impurities. If it is

3In some materials it is possible to influence the muonium and muon fractions with an external electric
field applied either parallel to or anti-parallel to the incoming muons’ direction of motion [118, 176].
Such an effect suggests that, at least sometimes, the electrons which eventually become bound to muons
originate far from the muons. Thus, it seems that electron transport properties of the solid play a role
in muonium formation. No electric field dependence of T;~! was observed in Y2Ti2O7 at 70 K and +13.8
kV cm~1.
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Figure 6.51: dc magnetisation measurements in Y»Ti»O- in a magnetic field of 0.02 T.

assumed that the most likely source of these impurities is due to oxygen deficiencies,
then a small fraction of the titanium ions will be found in an altered oxidation state of
3+, rather than 4+. Fitting the dc susceptibility with diamagnetic and paramagnetic
components, the sample has 0.14% of the molar susceptibility expected for this ion,
indicating the low impurity concentration. In this case, the observed relaxation could
be explained as follows: below ~ 90 K the muon is assumed to be static and seldom
“sees” a Ti**T ion. However, at higher temperatures the muon has a greater chance of
diffusing 4 near a paramagnetic ion and rapidly relaxing. Hence the asymmetry of this
fast component increases. At still higher temperatures this effect becomes averaged out
due to rapid diffusion.

The source of the muon spin depolarisation in Y>Ti»O7 is unclear. In any event,

whatever its origin, such a small rapidly damped signal would be swamped by the much

4Note however, it is unusual for the muon to start hopping below about 150 K in an oxide.
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larger effects from the electronic moments in the paramagnetic materials studied.



Chapter 7

Gd;,Ti,0; : the paramagnetic phase

The Gd3* ion (4f7) has an 837/, ground state with no orbital contribution to its angu-
lar momentum. Thus crystal field splittings and anisotropy are expected to be relatively
unimportant, at least as a first approximation. GdzTi,O7 should be an excellent approxi-
mation to a classical Heisenberg antiferromagnetic system with dipole-dipole interactions
as the leading perturbation. Muon spin relaxation is well suited to study gadolinium com-
pounds. By contrast, neutron scattering measurements on any gadolinium compound
require significant preparation. This is because the absorption cross section of the ¥7Gd
nucleus is enormous (254 000 barns at a neutron wavelength of 1.8 A), making the ob-
served scattering rate prohibitively small. Instead, samples of the material of interest
must be fabricated using the isotope ®°*Gd, which has an absorption cross section of 0.77
barns. However, this in itself is a difficult and expensive process.

Our #SR measurements on GdoTi2O7 have to date concentrated on the behaviour of
the spin relaxation rate T;! at higher temperatures, comparing this geometrically frus-
trated magnet with more conventional systems in the paramagnetic regime. Extensive
use is made of the ideas developed in section 5.2. Using first order perturbation theory,
a very similar general formula for T;?, given either dipolar or hyperfine probe-electron
interactions, has been derived by Moriya [32, 33] in terms of the autoccorrelation function
of the local field, which is the Fourier transform of the local field spectrum. His model
applies to an antiferromagnet both above and below the Néel temperature. Van Kranen-
donk and Bloom also independently developed an equivalent theory [177]. Mitchell has
calculated the form of 77! in a ferromagnet given a hyperfine coupling [178]. In agree-
ment with Moriya’s calculations, the spin relaxation rate in GdpTiyO- is independent of

temperature well above its transition temperature, where J/kgT <« 1. An extension of

125
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his formulation is found to quantitatively describe the magnetic field dependence of 77 1
in the paramagnetic regime at temperatures larger than the exchange coupling J. Us-
ing this description, the magnitude of J may be extracted independent of susceptibility
measurements of the Curie-Weiss temperature.

Measurements were made on the M13 and M20 secondary channels at TRIUMF in a
‘He gas flow cryostat using pressed polycrystalline pellets. Typical spectra are shown in
Fig. 7.52. Figure 7.53 shows the average muon spin relaxation rate in GdTi;O7 obtained
from fits to a single exponential relaxation function P,(t) = Acorre T = Acorre™* over
the time interval of 0.05 to 10 us after the muon’s arrival. For each magnetic field, a
global fit of all the spectra was used to assign a fixed corrected asymmety.

Using the results from section 5.2, the muon spin depolarisation rate is given by Eq.

(5.52)

17 [t : .
At) = 32 [ dr(t - Dlexpliw,n)@s-(r) + exp(—iym)on(m)],  (781)

where &, _(7) is the symmetrised local field autocorrelation function. In the fast fluctua-
tion limit, the timescale set by the fluctuating fields is much shorter than that set by the
muon Larmor frequency or equivalently ¢ >> 7. In this case the first term in Eq. (7.81)
dominates and the integral may be extended to infinity:

T [ . :
P 5 /0 dr[exp(iw,7)®+—(T) + exp(—iw,T)®_,(7T)]. (7.82)

Taking account of only nearest neighbour exchange interactions between electronic spins
in the paramagnetic regime, the unperturbed hamiltonian of the sample may be written

as
1
H, = gupHp Z Szj + § Z ijSj -Sk. (7.83)
j gk

The first term is the Zeeman interaction between the electronic spins and an externally
applied magnetic field Hy directed along the Z axis. The interaction between the muon
spin and the fluctuations of the I** electron spin §S; = S; — (S}), its position relative to

the probe at the origin given by 7, is taken as a perturbation and in this case has the
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form of a dipolar coupling:
oL 1
Hap = =222 [0,53, + 50488+ a_aB+)] (7.84)
where
Y14 - Aj -
6B; = Zl [—2-' exp(~i¢;)Sj+ + - exp(i;)Sj~ — 20:‘3.-;,;]
J=
N
(SB.'. = Z[BJ exp(2z'¢,-)S,-,_ + Aj exp(z'c,b,-)Sj,z + Cij,.*.]
j=1
0B_. = (0B.)" (7.85)
and the geometrical factors are
A; = 3Djcosb;sinb;
Bj = gDJ sin2 9]'
— 20.
C; = D,-l 3;os 0;
o Hoh
D, = pec g (7.86)

The axes of quantisation of the muon and electronic spin system need not coincide. Al-
though only transverse components of the local field autocorrelation function give rise to
spin relaxation, this includes longitudinal components of the electronic spin autocorrela-
tion function as well, as may be seen from Eq. (7.85). The symmetrised field correlation

function involves terms of the form

N
q>.|._(7') = <Z: (Cij.;.(T) + Bje2i¢5 Sj_ (T) + Ajei¢ijz(T))

Jj=1

N
:L;l (CkSk+ + Bke-zw" Si— + Ake"¢“ Skz)>

N . .
+ <Z;l (Cij+ + Bje'2’¢”' Sj.. + Aje"¢j sz)
J=

N - .
Z (CkS,H. (7) + Bre®® S, _(7) + Are™®* Skz(T))> . (7.87)
k=1

It is assumed that correlations between spins where j # k are negligible and only on site
spin autocorrelations are considered. Only terms involving (Si.(7)Si.), (Si+(7)Si-) and

(Si—(7)Si4.) are nonzero.
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Moriya made use of Kubo and Tomita’s theory for the quantum mechanical treatment
of the correlation function. It is developed as a power series in time ¢, where the coefficient
of t*/n! is the n** moment of the local field spectra. The spin autocorrelation functions

can then be calculated as
(5195:0) = (o0 () 80 o0 (-52) 510))
1

g\ 2
= (580 + (3) 15080 + 5 () (e [Su IS+ (789

using the Baker-Hausdorff lemma. Each coefficient is also evaluated as a series expansion
in 1/kgT. The traces are given by van Vleck [179]. Above the transition temperature
a Gaussian distribution of local field spectra is assumed. In other words, the series
expansion used to describe the autocorrelation function is compared with the first few
terms of an exponential function. The expansion need only be taken to second order in
t to adequately describe the data. This is because, by definition, in the fast fluctuation
limit the contribution to the integral in Eq. (7.82) at large t is negligible; the terms at
small ¢ (comparable with 7) dominate.

As an illustration,

(05:4(t)0Sz1) + (6S5:10S5(t))

~ 2 ('n{ 2}~ TS - ([, [, Sul)S)

12

h2 k TT’I‘{Hs[Hsa [Hs~; Szl]]Szl})
= —S(S +1) (1 - —2-2.72 -—S(S +1)
2 3 2 3

e )

~ §S(s +1)exp (—ZTS(S +1)
3 2 3 2
+ 8 ( z/l [- (S + 1)] - z%ES(S-!— 1)) %) (7.89)

and

(05:1(2)651) + (8S-1(2)6S11) + (854054(8)) + (65-16514(2))
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2
~ Ss(s+nen (—l(guBHo>2 -2 s(5+1)

+£ (zz T [5565+ 1)] Ll s(s+1 )) ,f;) (7.90)

where z is the number of nearest neighbours and 2’ the number of neighbours common

to two spins. Substituting into Eq. (7.82), the muon spin depolarisation rate is given by

-1 2 wﬁ
=G \/ v2[1+ O(Th/ksT)] e"p(’zvﬂHOU/kBT)])

2
+C2 \/ug[l + (gusHo/hve)? + O(T /k5T)]

Wy

where v, = \/ (22J25(S + 1)/3h?) is the spin fluctuation rate, w, the muon Larmor
frequency in the applied field and C), C; are coefficients which depend on the muon
site and the instantaneous local dipolar field. Good fits to Eq. (7.91) were obtained
for the magnetic field scan at 100 K, as shown in Fig. 7.54. The best fit values are
Cy = 2.9(1) x 10~% Kus™!, Cy = 3.2(2) x 10~° Kus™! and |J|/ks = 0.22(1) K. As noted
in Chapter 4, the corrected asymmetry is a function of magnetic field and so the spectra
taken at 100 and 7.5 K were fitted with exponentially relaxing functions where Acorr
was allowed to vary, as shown in Fig. 7.55. This effect is purely systematic, due to the
changing radius of curvature of the positron orbits as the magnetic field is varied.

As can be seen from the data taken at 7.5 K, the field dependence is no longer well
described by the theoretical curve at lower temperatures. This is thought to be due to the
build up of short range correlations which can no longer be ignored as the temperature
becomes comparable with the exchange coupling.

Moriya’s calculations of the temperature dependence of T1(T)/T1(T — oo) for a bee
lattice with S = 5/2 may be compared with °F NMR measurements on single crystals
of MnF,, which undergoes a transition to a long range ordered antiferromagnet at a
Néel temperature of 681 K. Shulman and Jacarino [180] measured the experimental

line width above the transition temperature in this classic material as a measure of
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Figure 7.52: Typical uSR. spectra in GdoTi2O7 in a longitudinally applied field of 0.005
T.

T»(T)/To(T — oo) and found a much more rapid temperature dependence. The hyperfine
interaction is at least an order of magnitude more important than the dipolar contribution
to the linewidths. However, in doing the comparison the authors assumed that the
temperature dependence of the relaxation times are essentially identical for both dipolar
and hyperfine broadening mechanisms, since in either case the broadening is linearly
dependent on the electron spin correlation time. For T > Ty, T2 ~ T} (this is only true
for an isotropic hyperfine interaction, i.e. both the electron spin fluctuations and the
electron nucleus interaction are isotropic). Since the observed temperature dependence
was much more pronounced than that predicted by Moriya, it is clear that the theory
is less than adequate to account for the effects of short range order on the local field
spectra. Hence it is not surprising that the form of the field dependence of 77! changes
at low temperatures and the data at 7.5 K does not fit well to Eq. (7.91).
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Figure 7.53: Spin relaxation rates T; ' in GdyTipO7 as a function of temperature in
various applied longitudinal fields.

The magnitude of the exchange coupling J extracted from the field dependence of T} !
is in good agreement with that obtained from measurements of the d.c. susceptibility by
Raju et al. [44]. From mean field theory, the exchange coupling is related to the Curie-
Weiss temperature through the relation Ocw = (1/3)271S(S + 1). The Curie-Weiss
temperature Ocw = —9.6(3) K, extracted from measurements between 10 and 300 K, is
thought to be largely due to exchange interactions of the order of J; = —0.30(1) K. In the
diluted compound (Gdg.02Y0.08)2Ti2O7, where the magnetic ions are isolated, ©cw drops
to ~ —0.9 K. A non-zero value must therefore be due to single ion effects. The effective
dipole moment of the Gd** ion in its S = 7/2 ground state is gpgm = 7.94up.
The magnitude of the dipole-dipole interaction 63uuo/(47r3,) is hence estimated to
be 0.84 K, calculating the nearest neighbour distance r,, from Tables 3.3 and 3.4. The
magnetic permeability is given by 19. Comparing this with the classical nearest neighbour
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Figure 7.54: Spin relaxation rates 77 ! in GdyTi,O- as a function of longitudinal magnetic
field at 7.5 and 100 K. The fitted curve is described in the text [Eq. (7.91)].

exchange energy Juassicat = J15(S + 1) of —4.8 K, it can be seen that unlike systems
containing transition metal ions, the dipolar interaction is not insignificant. Deviations
from Curie-Weiss behaviour occur below ~10 K, while specific heat measurements by the
same authors indicate that Gd,TisO7 exhibits short range order which starts developing
at 30 K.

Below ~ 4 K, T7! increases rapidly due to critical slowing down of the Gd spin
fluctuations. This is consistent with experimental evidence from measurements of the ac
and dc susceptibility and heat capacity data, which show that Gd;Tis O exhibits long
range order at 0.97 K. There is a broad peak in the specific heat centred around 2 K and
a sharp decrease below 1 K. There is no frequency dependence to the ac susceptibility,
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Figure 7.55: Corrected asymmetry in Gd,TiO7 as a function of longitudinal magnetic
field at T=100 K.

in either the short or long range ordered regimes, which would have suggested spin glass-
like behaviour. Interestingly, unpublished specific heat measurements by Ramirez [181]
indicate a complicated low temperature phase diagram with possibly as many as four
phases as a function of temperature and applied magnetic field. Clearly further uSR

experiments are necessary below 2 K.



Chapter 8

Tb,Tiy 07 : an intriguing puzzle

Muon spin relaxation experiments indicate that unlike other geometrically frustrated
systems, Tb,TioO- displays neither conventional Néel order nor a glass-like state down
to temperatures as low as ~ 0.015 K, despite the fact that antiferromagnetic correlations
(AFC) develop at ~ 50 K. No evidence for static order is seen in measurements of the
spin-lattice relaxation rate even at temperatures of a few percent of the Curie-Weiss
temperature. Rather, in terms of the spin fluctuations the system appears essentially
to remain dynamic at low temperatures. In addition, inelastic neutron scattering shows
incomplete soft mode behaviour in its magnetic excitation spectrum below about 30 K.
The relatively flat magnetic excitation spectrum softens at the first antiferromagnetic
wave vector, in a manner reminiscent of the roton minimum in superfluid liquid 4He.

A fit of dc susceptibility measurements [95] taken in a magnetic field of 0.01 T in
the high temperature regime (> 200 K) to a Curie-Weiss form x~! ~ T — fcw yields an
antiferromagnetic Curie-Weiss temperature of fcw = —18.9(3) K and a paramagnetic
moment of 9.6, which compares favorably with the free ion value appropriate to Tb3+ in
its 7 Fs ground state. While the observed susceptibility departs from the Curie-Weiss form
below ~ 100 K, no anomalies or history dependences are observed at low temperatures,
indicating the absence of a transition to a long range ordered or spin glass-like state
above 2 K.

The behaviour of TbeTieO7 was studied by uSR measurements in a small longitu-
dinal field of 0.005 T at TRIUMF using both powder and [111] single crystal samples.
Large rapidly fluctuating internal magnetic fields, which characterise a paramagnet, are

evidenced by the single exponential muon spin relaxation observed at all temperatures.
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The results of analysing ! the data between 0.05 and 10 us are shown in Fig. 8.56. The
smooth monotonic increase of T;' down to 75 mK for the powder and 15 mK for the
single crystal establishes that Tb,Ti,O7 remains paramagnetic down to very low tem-
peratures. There is no evidence of a peak in Ty, which would indicate the critical
slowing down of spin fluctuations associated with a continuous phase transition. In the
fast fluctuation limit, which is appropriate here, the muon spin relaxation rate is given
by Eq. (5.59). Taking A/v, = 0.70(6) T from studies of the isostructural compound
TbeMo,0O7 [22], one can estimate the spin fluctuation rate. This is reasonable as the
behaviour of the Tb%+t moments in the paramagnetic regime is measured to be roughly
the same. In TboMo2O7 one can measure the magnitude of the internal field directly
since spin freezing is observed. For example on the low temperature plateau below 2 K
it is estimated that v saturates at about 0.04 THz.

Powder neutron diffraction measurements were carried out on the C2 diffractometer
at the NRU reactor at Chalk River Laboratories (CRL). Measurements were performed
between 2.5 and 100 K employing a Si(1,1,3) monochromator and 3.52 THz neutrons,
with a pyrolytic graphite (PG) filter in the incident beam to remove higher order con-
tamination. Results at 2.5 K are shown in the top panel of Fig. 8.57. Sharp, resolution
limited nuclear Bragg peaks are superimposed on diffuse magnetic scattering, reminis-
cent of that seen from TboMo,O7 [80]. The 2.5 K and 50 K data sets, from which the
diffraction pattern taken at 100 K has been subtracted, are shown in the bottom panel
of Fig. 8.57. This net intensity has been corrected for the Q-dependence due to the Th3+
magnetic form factor [184], and can be directly compared with models of short range
AF order. The diffuse scattering evolves with temperature, clearly showing that short
range antiferromagnetic correlations develop below 50 K and the form of the structure
factor is reminiscent of that observed in liquids. Ashcroft and Lekner [185] calculated a

closed form for the structure factor S(Q) for a system of hard spheres of diameter o and

1At early times (< 0.05 us) the spectra are prone to distortions which often appear as a step in the
data. Hence the first 0.05 us have been omitted from the analysis.
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Figure 8.57: A neutron diffraction pattern in Tb,Ti,O7 at 2.5 K is shown in the top
panel. The difference between difraction patterns taken at 2.5 K (filled circles) and 50 K
(open circles) and that taken at 100 K is shown in the bottom panel. The solid lines are

fits to Eq. (8.94).
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number density n as

5(Qo) = [1 - nC(Qa)] ™ (8.92)
where
C(Qo) = —4ma® /0 "ds 32%-5—2—0-(04 + Bs +vs®) (8.93)

is the Fourier transform of the correlation function. The quantities ¢, 8 and 7y depend
only on the fraction of the total volume occupied by the hard spheres. The above equation
is in good agreement with experimental data on liquid He, Ne, Ar, Kr and Xe [186]. An
analogous equation for the scattering from a polycrystal displaying a local magnetic

structure due to short range magnetic correlations is given by Bertaut et al. [187):

~ o\ SIn(Qrik)  sin(Qrjk)
5(Q) %(SJ Sk) Oror x ore (8.94)

Using this model, involving spins correlated over nearest neighbours only, provides a
good description of the diffuse scattering shown in Fig. 8.57, as shown by the solid
lines. It correctly accounts for the positions of the peaks and valleys, at this and other
temperatures up to 50 K. Interestingly, the inclusion of spin correlations beyond nearest
neighbour and using, for example, the FeF3 local structure, produces another broad peak
in the calculated net intensity intermediate between those at ~ 1.2 and ~ 3.1 A-1. This
is consistent with the peaks at 1 and 2 A observed in TbyMo,O7 [80], where magnetic
moments at the Mo** site can mediate longer-range spin correlations. The intermediate
peak is not observed experimentally in this material and it is therefore concluded that
spins in Tb,Ti07 are correlated over a single tetrahedron only, down to at least 2.5 K.

Inelastic neutron scattering measurements were performed on the C5 triple axis spec-
trometer at CRL in constant scattered energy mode. Low energy-resolution measure-
ments (E'/h = 3.52 THz) with a PG filter in the scattered beam revealed the presence of
dispersionless modes at frequencies of ~ 2.4 and 3.5 THz, which are crystalline electric
field levels (see Fig. 8.58). The peak at ~ 3.5 THz is broadened due to mixing with
phonons.

Lowering E’/h to 1.2 THz with a cooled Be filter in the scattered beam allowed for
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Figure 8.58: Inelastic neutron scattering data obtained at a temperature of 12 K and
Q=22 A-1 in Tb,TiyO-.
higher energy resolution (~ 0.09 THz FWHM) measurements and typical constant |Q)|
scans are shown in the top panel of Fig. 8.59. The energy of the modes at 0.7 and 2.2 A~!
are nearly identical, while there is a pronounced decrease in the integrated intensity of
the mode at 2.2 A~! compared with that at 0.7 A~!, consistent with that expected due
to the Tb*+ magnetic form factor. The energy of these modes clearly dips near 1.2 A-1
and Gaussian fits to these and similar data at a variety of |Q|’s bear this out, as is seen
in the lower panel of Fig. 8.59. At 12 K the energy of this mode dips by roughly 10%,
at the wavevector corresponding to the first maximum in the magnetic structure factor
(see Fig. 8.57). Recently, similar measurements have been done on a single crystal by
Kanada et al. [188].

This incomplete softening of a well defined excitation has not been previously observed
in geometrically frustrated magnets, or in chemically disordered spin glasses. Similar

magnetic behavior has been observed in the amorphous ferromagnet CosP [189]. The
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minimum in the magnetic excitation spectrum goes away with increasing temperature
roughly on the scale of 8cw and by 30 K it is no longer evident as seen in the bottom
panel of Fig. 8.59, even though the excitations themselves are still well defined. On
further increasing the temperature the mode weakens in intensity and has merged into
the background by 100 K.

A gapped magnetic excitation spectrum with weak dispersion is known to exist in a
variety of singlet ground state systems such as Haldane[190] and spin-Peierls[191] mate-
rials and in a few praseodymium intermetallics[194], where the ground and first excited
states are singlets. Haldane [192] predicted the existence of a gap between the many-
body singlet ground state and triplet first excited state in an one-dimensional system
with Heisenberg interactions between antiferromagnetically coupled integer spins. The
spin-Peierls transition [193] is also due to collective behaviour in one-dimensional antifer-
romagnetic spin chains. The coupli'ﬁg;"between the electronic spins and three-dimensional
lattice phonons leads to a magneto-elastic instability and hence a transition to a dimerised
ground state. This again gives rise to a gap in the magnetic excitation spectrum, sepa-
rating a singlet ground state from a triplet excited state. By contrast, the singlet ground
state arises from single ion crystal electric field effects in the praseodynium compounds.
Such a singlet ground state occurs in the Tm®** based titanate, TmyTi,0-[96]. It is im-
portant to rule out such a possibility for Tb®+ in TbyTisO7 as such a system trivially
fails to undergo transitions to either an ordered or a spin glass state on lowering the
temperature, due to the non-magnetic nature of the rare earth ground state. However,
Tm,TisO7 displays the characteristic temperature-independent low temperature suscep-
tibility and the absence of elastic magnetic neutron scattering, clearly distinguishing it
from our present study of TbyTisO7. This, along with the SR results, lead us to con-
clude that the Tb®* ground state is magnetic and that potential explanation for the
absence of a transition can be eliminated.

Susceptibility measurements have also been carried out on the dilute system

(Tbo.02Yo.08)2Ti2O7 to investigate the nature of the ground state of isolated Tb** ions in
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their pyrochlore environment. Strongly temperature dependent behaviour was oberved
down to 2 K with a Curie-Weiss temperature of —6.3(4) K, also indicating a magnetic
ground state. This is borne out by the crystal electric field calculations described in
Chapter 3, which predict doublets for both the ground and first excited states. Fur-
thermore a large paramagnetic frequency shift is observed in a transverse magnetic field
of 0.096 T at all temperatures. These measurements are discussed in greater detail in
section 8.2. The muon precession frequency shift, which is a measure of the local suscep-
tibility, tracks the bulk dc susceptibility down to 2 K, indicating that the muon is not
perturbing the magnetic system in any significant way. There is thus every indication
that the muon is simply probing the low frequency dynamics as a simple spectator in
this system. It should be kept in mind that the few special cases where the muon is a
significant perturbation such as PrNis [195] and PrIn; [196] are singlet ground state sys-
tems. Their crystal field levels are dramatically altered because of the delicate magnetic
balance in that state. That is certainly not the case in TheTisO7.

The gapped magnetic excitation spectrum is then attributed to Ising-like anisotropy
in the spin Hamiltonian, as would be expected from orbital contributions to the Th3+
magnetic moment in its crystalline environment. The present measurements indicate an
anisotropy gap of ~ 0.38 THz or 18 K. It is possible to think of the dip in the excitation
spectrum as a collective tumbling of spin orientations on loosely correlated tetrahedra
from one such local ground state to another. A magnetic excitation with such a char-
acteristic has been discussed theoretically [197]. It is speculated that further softening
of this mode, requiring larger exchange relative to the competing energy scales in the
problem, including the anisotropy gap and perhaps dipolar energies, would precipitate a
transition to either a non-collinear ordered magnetic state or a spin glass state. However,
this does not occur in TbyTizO, leaving it a cooperative paramagnet to low tempera-
tures. In light of this, the low temperature plateau in the uSR spin relaxation rate and
the corresponding field fluctuation rate may be determined by some effective exchange

coupling between the correlated tetrahedra of Tb3* spins, as illustrated in Chapter 7.
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8.1 Calculations of 77!

An extensive series of uSR measurements on the powder sample have also been carried
out in higher longitudinally applied magnetic fields, the results of which may be seen in
Fig. 8.60. All the spectra were analysed between 0.05 and 10 us. Most of the data is
well described by a single exponential Ao exp(—t/T1), with the exception of that at 1
and 2 T, where non-exponential behaviour gradually develops below 4 K (see Fig. 8.61).
The cause of this phenomenon is as yet unclear. The corrected asymmetry Acor Was
held constant for the temperature scans at values found from global fits of the data at a
particular field. This is no longer appropriate for field scans, as illustrated in Fig. 7.55.
Hence the asymmetry was allowed to vary for the field scans shown in Fig. 8.62. All the
data were well fitted by a single exponential function for fields below 0.15 T, even at
0.075 K.

The muon spin depolarisation rates observed as a function of temperature and field in
TboTisO7 are highly unusual and a detailed theoretical framework is needed to interpret
the data. The calculation of 77! in a system of electronic moments subject to crystal
electric fields, dipolar and exchange interactions is by no means straightforward and to
the author’s knowledge a complete description is not as yet available.

The shift in the observed resonance frequency, a function of the local field, relative
to an external applied field, depends on the dynamical spin susceptibility x(r,t). This
is also related to the scattering function S(Q,w) in the neutron magnetic scattering
differential cross section [198] and, via the fluctuation-dissipation theorem, to the spin
lattice relaxation rate 77! [199]. The fluctuation-dissipation theorem describes the re-
lationship between the response of a system and its thermal Juctuation spectrum. It is
quite general, but here only its application to a magnetic medium is considered. The

magnetisation is given by (| M|y) where M, is the magnetic moment operator in the
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« direction. As derived in White [200],

[ /200, M) + Mal—) Mot ) = Y conts (Z2) 00

(8.95)
where s denotes the symmetric part of the tensor. In other words, the Fourier transform
of the correlation function is proportional to the imaginary or absorptive part x” of the
dynamic susceptibility. The reactive part of the response, which is in phase with the
perturbation, is denoted by X/, such that x(q,w) = x'(q,w) + ix"(q,w). In the limits
w — 0 and g — 0, the dynamic susceptibility becomes the ordinary static susceptibility.
As a point probe, the spectrum obtained with the uSR technique is an average over all

wave vectors.
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Figure 8.61: The parameter § versus temperature for TboTi»O7 in an applied field of
1 T. The spectra were fitted to a stretched exponential function G..(t) = exp[—(¢/T1)?].

In principle, it should be possible to extract both the scattering function and spin
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lattice relaxation rate from a calculation of x”(w). In intermetallic compounds, where the
dynamics of the rare earth ion are dominated by the coupling between the total momen-
tum J and the conduction electron spin density, general methods have been developed to
calculate x”(w) in the presence of CEF splittings [201, 202, 203]. Following the notation
of Dalmas de Réotier et al. [204], a description for the muon spin relaxation rate in a
4f paramagnet with strong crystal electric fields and weak intersite interactions is devel-
oped below. It is written in terms of the van Vleck formula [205] for the susceptibility,
derived using linear response theory [172]. The exchange narrowing approximation has
been assumed.

Making use of the approximate model of Holland-Moritz et al. [206] derived for the
computation of inelastic neutron scattering spectra, the susceptibility is split into Curie
and van Vleck terms. The diagonal elements of the susceptibility tensor, the only ones

which are non-zero, are given by:

Xeol) 2 Prn() + 5 3 XL~ XD (—B )] Pom (= Z22) (899

m n#EmM
where the sums are over the CEF energy levels. The first term, the Curie susceptibility

of the m** level, is written as

2
iz = LGIEY (1t )2 = ol alm) ) (897)
kgT
while the second term
m n|Jajm)?
5 = oo -

is the van Vleck susceptibility for the transition from the state with energy E., to the
state with energy E,, such that A,,, = E, — E,,. These terms describe the elastic and
inelastic CEF transitions respectively. The probability of the m* level being occupied is

governed by Boltzmann statistics:

Pm = exp(_,BEm)/Z (899)

where 8 = 1/kgT and Z is the partition function.
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Introducing the Curie susceptibility for the free ion,

_ polgsps)*J(J +1)
the relaxation rate can be written generally as
1. X'(w)
—3 a /l ) M a/ — — .
Az [gj Low (8, $) Mo, ] oy (8.101)
or equivalently
1
Az = Lz; Lo (0, ¢>)Ma,a,] Toon (8.102)

where M, o is the coupling tensor between the magnetic ion and the muon spin and La o

is a tensor

cos? pcos? +sin®¢p —cos¢sinpsin®?f —cospcosfsind
—cos¢singsin®f  sin® pcos? +cos>¢ —sinpcosfsind |- (8.103)

—~cospcosfsind —sin¢cosfsinb sin® 6

The powder average of each diagonal element is 2/3; off-diagonal elements vanish. If the
crystalline axes and laboratory axes are coincident, for cubic symmetry M., = M, =
A2 and so the well known formula valid in the motionally narrowed limit is recovered:
Az(T) = 2A%/T,sr(T). Note that the fluctuation rate I',sp is a now complex quantity
with contributions from both quasielastic and inelastic excitations. If one neglects the
possible effect of the inelastic excitations, as is usual in NMR, TI',sp is determined by
the quasi-elastic linewidth measured by inelastic neutron scattering. However, the two
quantities are not in general equal.

Complications arise in attempting to evaluate P, (w), the spectral functicn for the
mn excitation. To compare neutron scattering and uSR data a lorentzian shape is as-

sumed:
1 Cam

72+ (hw — Apm)?
where ['nm is the dynamical half width at half maximum. In the absence of a theoretical

Pom(w ~ Bam/R) = (8.104)

model, I, must be measured experimentally. The energy broadening of the magnetic
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excitation at ~ 0.4 THz has been followed as a function of temperature by Kanada et
al. [188]. It decreases linearly with temperature above roughly 40 K, below which it
becomes almost temperature independent at ~ 1 meV, above the resolution limit of the
spectrometer. However, in the limit of rapid spin fluctuations, uSR is sensitive to the
magnetic excitations at an energy associated with the muon Larmor frequency, which is
typically in the MHz range. Hence, it is the broadening of the quasi-elastic peak which
is the relevant quantity needed to evaluate 77!. Unfortunately, the peak around zero
energy transfer is thought to be mainly due to incoherent elastic scattering. In general,
the coherent and incoherent contributions to neutron scattering arise in the following
way [198]: a system has different scattering lengths b associated with the nuclear spin
(in particular, different values of S, for the combined nucleus and neutron system), or
with the presence of isotopes. The coherent scattering is that which would arise if all the
scattering lengths were set equal to b. The incoherent scattering results from the random
distribution of the deviations of the scattering lengths from their mean value.

To simplify the problem, P,,(w) has been set equal to 1 and T ! calculated using
Eqgs. (8.96) and (8.101), substituting in the eigenvalues and eigenvectors of crystal electric
field and Zeeman Hamiltonians. The energy levels associated with the former interaction
alone are summarised in Table 3.7, where the charges on the terbium and oxygen ions,
as well as the oxygen parameter z, have been adjusted to match the inelastic transitions
shown in Fig. 8.58. The energy levels are therefore infinitely sharp, which is unphys-
ical as it implies that the ions are completely isolated. In a real system dipolar and
‘exchange interactions between electronic moments would give rise to energy levels with
finite linewidths. Nevertheless, this naive calculation does reproduce some of the features
seen in Fig. 8.62, as shown in Fig. 8.63. In contrast with Gd»Ti,O7, at high temperatures
T7! increases smoothly with applied magnetic field, reaching a peak at roughly 3.5 T
before decreasing again. The effect of a magnetic field applied along the local 2 axis is
to split any degeneracies in the CEF energy levels in Table 3.7. For example, fields of
0.1 and 2 T result in splittings in the ground state doublet of 0.7 and 17 K respectively.
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Figure 8.63: Calculation of the muon spin relaxation rate using Eqgs. (8.96) and (8.101).

It is the splitting of the ground state and first excited doublets which are of the greatest
interest. As shown in Table 3.7, the former is made up of predominately |J, = %5)
and the former | = 4). The peak in the calculated value of T} ! at approximately 2 T
corresponds to significant mixing of the |J, = +5) and |—4) states and is associated with
a level crossing resonance, while by 3 T the |—4) state has dropped lower than the |+ 5)
state. By contrast, fields applied along the Z and ¢ directions cause transitions between
energy levels, mixing different values of the z component of the total angular momentum
J. such that, for instance, the probability amplitude of |J, = +5) for the lowest energy
level drops from ~ 96% in zero field to ~ 66% at 2 T. As a result, the contribution from
the van Vleck term in the susceptibility increases. The results shown in Fig. 8.63 are
an average of contributions from magnetic fields in the Z, § and 2 directions. Interest-
ingly, the more pronounced increase in T; ! observed at 30 K as compared with those at

both 100 K and 2.5 K is also qualitatively reproduced. The peak is suppressed at low
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temperatures since only the lowest state is occupied. There is a discrepancy in the field
associated with the peak in 77! between the data and calculation. This may be because
of the crude nature of the point charge calculations of the crystal electric field levels.

The variation in the spin relaxation rate as a function of temperature is much less well
modelled, likely because of the temperature dependence of the linewidth. In an applied
field of 0.005 T, the Curie term in the susceptibility does increase by ~ 50% to a rounded
peak at 25 K, due to the depopulation of higher CEF energy levels as the temperature
is reduced, but this feature is washed out. In the absence of CEF effects, (as in the case
of the Gd3* ion) only the Curie term contributes to the susceptibility, the energy level
splittings are governed by the Zeeman interactions and are hence much smaller. Since
the populations of the various energy levels then do not change significantly over the
temperature and field range explored, the spin relaxation rate is independent of temper-
ature and decreases with magnetic field. The spectral functions act to alter the relative
importance of the various elastic and inelastic transitions, changing the temperature and
field dependence of T7.

The field dependence modelled by Eq. (8.96) is a single ion effect and does not
reproduce the features observed below 0.5 T at low temperatures, which are as yet not
fully explained. In this regime pugH/kgT is large and the Tb spins are significantly
magnetised, as can be seen in Fig. 8.64, which describes the magnetisation of Tb%* ions
in the absence of crystal electric field splittings. Hence, as the static component of the
internal field increases, there is a corresponding decrease in the spin relaxation rate. The
reported decrease in 77! with magnetic field occurs at temperatures where transverse
field measurements show a large shift in the muon Larmor frequency (see Fig. 8.68).
Through the fluctuation dissipation theorem [Eq. (6.79)], T may be related to x”/w.
Assuming that the spectral function in Eq. (6.80) does not change rapidly over the
frequencies probed, this is proportional to the fractional frequency shift, a measure of
the local susceptibility x’. Transverse field measurements were carried out at 3 and 285

K on the powder Tb,TisO; sample to extract the local susceptibility, as illustrated in
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Figure 8.64: Plot of the Brillouin function describing the magnetisation of a set of iden-
tical free Tb** ions in their “F ground state.

Fig. 8.65. While the theoretical functional form of x’ is not understood in this highly
magnetised regime where short range correlations predominate, Fig. 8.65 shows that the
field dependence of the spin relaxation rate can be qualitatively reproduced.

It is clear that there are two relevant energy scales in this material: that associated
with the crystal electric field energy splittings of tens of kelvin and the scale where the
Zeeman splitting of the lowest doublet becomes comparable with kgT" (at ~ 1 K and
~01T).

8.2 Evidence for partial spin ordering

The spin-ice picture described in Chapter 2 cannot be a priort ruled out in TbyTizO
and may help to explain the complicated temperature and field dependent behaviour in
this material. Point charge crystal electric field calculations indicate that the ground

state of the Tb3* ion in its pyrochlore environment is a doublet with the next excited
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Figure 8.65: Temperature times fractional frequency shift versus applied magnetic field
for TbaTisO7 at 285 and 3 K. The fractional frequency shift, a measure of the local
susceptibility )/, is proportional to x”/w and through the fluctuation dissipation theorem
to Ty [Eq. (6.79)].
state roughly 18 K higher. This is evidence that at low temperatures TboTioO7 should
behave as a quasi spin 1/2 system, where each spin is constrained to point along its
local [111] axis. To a first approximation the contribution to cw from magnetic interac-
tions (as opposed to crystal electric field effects) may be estimated as cw (TboTi2O7) —
Bcw ((Tho.02Y0.08)2Ti207) = [-19 — (—6)] = —13 K, comparable with GdyTi»O7. Thus
estimates of the ratio J/D yield a value of ~ —1, close the phase boundary for spin-ice
behaviour described in Ref. [72].

The 77! results described in section 8 show no evidence of spin freezing but rather
that TheTisO7 remains in a cooperative paramagnetic state down to 15 mK. Theoretically

however, it is very difficult at the classical level to prevent a transition below 100-200 mK
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Figure 8.66: Corrected asymmetry versus temperature for TboTi>O7 [111] single crytsal
in a longitudinal field of 0.005 T.

or so. Azaria et al. conjectured that frustration in the pyrochlore Heisenberg antiferro-
magnet can easily induce a first order phase transition [207]. The calculations of Reimers
et al. [208] based on Landau theory predict long range order with an ordering wave-vector
of Q = 0 for models where the nearest neighbour exchange coupling J; < 0 and J3 > 0.
Analysis of Monte-Carlo simulations with these same combinations of interactions also
suggest that the transition may be first order [209]. There is no critical slowing down of
spin fluctuations. Consequently, one would not necessarily see a peaking of the dynamical
relaxation rate upon approaching the transition. At best, a reduction in the corrected
asymmetry below the transition temperature would be observed, corresponding to the
1/3 component associated of a Kubo-Toyabe function. Figure 8.66 shows the corrected
asymmetry measured below 3 K in a longitudinally applied field of 0.005 T for the single

crystal sample of TbyTi»O7. As can be seen, there is no obvious change.
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A frequency dependent peak has been observed around 250 mK [210] in ac suscep-
tibility measurements between 25.9 Hz and 793.4 Hz. Such frequency dependence is
reminiscent of the behaviour of conventional spin glasses. On a cautionary note, su-
perparamagnets may show similar frequency dependent behaviour, as well as history
dependence. It should be remembered that spin glass behaviour is thought to be due to
the collective response of many spins versus the reorientation of finite sized spin clusters,
which becomes inhibited below a so called “blocking” temperature in a superparamagnet.
In the latter system the temperature dependence of the peak in the a.c. susceptibility
typically obeys an Arrhenius law due to an anisotropy gap, whereas in spin glasses the
shift is generally much smaller.

With these results in mind, uSR spectra were recorded at very fine temperature
intervals for the single crystal sample. Nevertheless, as shown in Fig. 8.56b, there is only
very slight if any evidence of a peak in 77! at ~ 250 mK. No freezing of the spins is
seen on the time scale of uSR, as would be evidenced by the development of a 1/3 static
component.

It cannot be claimed that no static ordering occurs. The SR results imply only that
the dynamic part does not show any abrupt features which are typical of an ordinary
phase transition. This suggests that only a small fraction of the moments or a small
fraction of each moment is involved. One may only say that there remains a large dynamic
part to the internal field through the region of the phase transition, if it exists. Even in
zero field it is not straightforward to quote a “sensitivity limit” for detection of a partial
static component. Coexisting static and dynamic internal magnetic fields have been
discussed in Chapter 6 with respect to conventional spin glasses. The dip in the Kubo
Toyabe function shown in Fig. 5.23 occurs at ~ 1/A, where A is a measure of the static
internal field. Hence the rapid depolarisation of 2/3 of the signal due to an internal field
of greater than ~ 20 MHz would not be visible, as it occurs within the initial dead time
of ~ 50 ns. Instead, the static component would appear as a loss of asymmetry, as only
the 1/3 component would be detectable. Such a loss of asymmetry is not clearly observed
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in the measurements. However, a smaller static internal field would give rise to rapid
depolarisation of 2/3 of the signal. This is difficult to separate from rapid depolarisation
due to dynamic spins. The dynamic signal acts to wash out any feature reminiscent of a
Kubo Toyabe function. On the other hand, single exponential relaxation would not be
expected given a sizeable static component. The single exponential behaviour observed
in low fields implies that any static contribution must be small. In the longitudinal field
geometry used in the field scans shown in Fig. 8.62 there is little or no sensitivity to the
buildup of a small static internal field.

While the longitudinal field uSR measurements give no indication of a phase tran-
sition, experiments in a transverse field geometry of ~ 0.09 T show history dependence
below 1 K (see Fig. 8.68b). The data in a conventional cryostat (square symbols) were
taken using the separate spectra apparatus described in Chapter 4, recording the shift in
the muon Larmor frequency in the ThoTi,O7 sample relative to a silver reference. The
shift is a measure of the local contact hyperfine field at the muon site, since the dipolar
field contributes nothing 2 in a powder material [121]. This is because the orientation
of the grains is random and so the angle between the external field direction and the
vector between a particular spin and the muon is also random. The field associated with
a magnetic dipole averaged over all directions with respect to the point of observation is
thus zero. A typical spectrum is shown in Fig. 8.67. The spectra taken in the dilution
refrigerator were analysed by fitting them to two oscillating signals between 0.01 and 1.5
us with gaussian and exponential envelopes. The former was used to model the silver
background, the latter the sample. As shown, there is a difference of ~ 5 — 10% in the

inverse fractional frequency shift

Usitver/ (Vsitver — VSa.mple) (8.105)

between spectra taken on cooling or warming. The frequency shift of ~ 50% observed at
0.5 K corresponds with a magnetic field of 0.5 T and hence the history dependence implies

there is a static component to the internal field of ~ 0.0025 — 0.005 T. It is speculated
2However, it does contribute to the linewidth. 4
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Figure 8.67: Muon precession signals observed in a) Ag and b) Tb,Ti2O+ in a transverse
field of 0.092 T at 3 K. The data were recorded using the separate spectra apparatus
described in Chapter 4.
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that the sample is magnetised on cooling, inducing a small ferromagnetic component
which persists on warming to 1 K. However, the signal from such a small static internal
field could easily be swamped by that from the dynamic internal fields, which are of the
order of 1 T.

Similar hysteretic behaviour has been observed in preliminary unpublished neutron
diffraction experiments carried out by J. S. Gardner et al.. The intensity of the (002)
reflection builds up as a magnetic field is increased above 3 T at 2.1 K. The intensity
of this signal then persists as the field is reduced below 3 T. This magnetic Bragg peak
is resolution limited and has been observed with the applied magnetic field along all
three major symmetry directions. It suggests that a fraction of the spins are correlated
over a range of ~ 400 A, forming ferromagnetic clusters. It should be noted that these
diffraction measurements are energy integrated and therefore completely insensitive to
the spin dynamics.

In a number of the rare earth titanates, it has been shown that applying a magnetic
field causes the system to enter one or more stable phases which at present are not well
characterised. Monte-Carlo simulations of spin-ice systems have been able to describe
the magnetic susceptibility and diffuse magnetic neutron scattering results well, but the
nature of the spin dynamics has not been fully studied to date. Muon spin relaxation
is providing a window into the dynamic behaviour of the Tb spins which is difficult to

access with other methods.



Chapter 9

Conclusions

Pyrochlores exhibit a rich variety of novel magnetic behaviour which is most likely caused
by geometric frustation but controlled by second order effects, such as the range of the
spin-spin interactions, disorder, anisotropy, thermal and quantum fluctuations. Muon
spin relaxation is one of the principal methods which has been used to characterise this
diverse behaviour since it is uniquely sensitive to the low frequency magnetic fluctuations
which are often present in these systems in the interesting low temperature regime. It
has also proved to be a natural complement to neutron scattering.

Despite the high degree of crystalline order, the freezing process in YoMo2O7 appears
similar to that expected for a dilute spin glass. In particular, non-exponential muon
spin relaxation and critical slowing down of the spin fluctuations is observed near TF,
indicative of an exotic spin autocorrelation function which obeys a power law function
in time. Below T there is evidence for a highly disordered magnetic structure. The
transition temperature is suppressed with increasing substitution of Mo by Ti. The
most striking feature in the diluted systems Y,Moo_,Ti;C+ is the presence of a residual,
temperature independent spin relaxation which persists down to very low temperatures.
This shows there is an appreciable density of states for low energy magnetic excitations
which is much larger in these systems than in conventional randomly frustrated spin
glasses. It is possible that the residual low temperature dynamics in these systems are
“remnants” of the zero-modes predicted theoretically for nearest-neighbour Heisenberg
spins on a pyrochlore lattice [3, 51, 52, 211].

A clear field dependence of the spin relaxation rate 77! in Gd2Ti2O7 in the param-
agnetic state is reported. This effect, which is expected theoretically but has not been

previously observed, is believed to be due to contributions to the transverse component
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of the spin auto-correlation function arising from the Zeeman interaction. The reduc-
tion in T, * occurs when the Zeeman interaction exceeds the exchange interaction and is
thus a direct measure of the near neigbour exchange constant. This could be a sensitive
new way to obtain J when it is small and difficult to measure via other means such as
susceptibility.

The combined uSR and neutron scattering results on TbeTi2O7 point to the persis-
tance of a paramagnetic state down to 0.015 K, even though antiferromagnetic correla-
tions develop as high as 50 K. This is thought to be the result of competition between the
near neighbour exchange and anisotropy energy scales on the pyrochlore lattice. Thus,
correlated tetrahedra are only weakly coupled and continue to fluctuate, as demonstrated
directly by the non-zero low temperature T3 ! values measured by uSR. The low lying
magnetic excitation spectrum displays an anisotropy gap of ~ 18 K, which undergoes
incomplete softening at the wave vector characterising the antiferromagnetic short range
order. Significant spin fluctuations remain even in an applied field, where preliminary
measurements with techniques other than uSR suggest partial ordering. Clearly a more
sophisticated theoretical model is called for to explain the complicated temperature and
magnetic field dependence of the spin dynamics which has been observed.

Obviously frustrated systems form a vast field of study within the rich subject of
magnetism. Spin ice materials such as Ho,TiyO7 and Dy,Ti;O7 have become particularly
topical within the last two years. In the immediate future there are plans to examine
these compounds using uSR. The variety of ordered phases reported in Gd;Ti;O7 below
1 K also have yet to be explored with SR and will without doubt exhibit interesting spin
dynamics. Further neutron scattering experiments on TbyTi;O7 in a applied magnetic
field should also shed new light on the behaviour of this perplexing material.

There is an almost limitless number of combinations of rare earth and transition met-
als ions from which different compounds with a pyrochlore structure may be synthesised.
In this thesis no mention has been made of those which contain 2 magnetic species or

are metallic. In the former the interplay between the two species introduces an extra
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complication, while in the latter the interaction with the conduction electrons similarly
makes theoretical modelling of the data more involved. Nonetheless, a variety of com-
pounds have been studied [212, 213, 214, 215, 22] and (perhaps not surprisingly) have
been shown to exhibit anything from long range order to spin glass or re-entrant spin
glass behaviour.

In conclusion, geometrically frustrated systems are “fragile”. The low temperature
behaviour depends sensitively on all the interactions in the system and a prediction can
not be made on the basis of the interaction with the largest energy scale alone. This is
perhaps the most exciting aspect of these systems, since the only certainty is that one

will find new and unexpected magnetic behaviour.
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Appendix A

Crystal electric field and spin-orbit hamiltonians for YoMo,O;

Cleazr["Global ‘«"]

Off[Ganaral: :spelll)

L=x3; S=1;

J=L-8S;

lsizex2+«L+1;

ssizex2S+1;

(=Calculations are in units of THz«)

kb= 8.61710* (~-5) »2.41796+10~2; («Boltzmann’ s constants)
bohr = 5.7884 « 10~ (-5) #2.41796+10~2; (+Bohxr magnetonw)
elec = 4.8032410~(~-10); (+Elactronic charges)

Bohrradius = 0.529177; («Bohr radiuse)

Angstrom =110+ (-8); .
VunitTHEz = elec~2/ (6.626210~ (-27) » 10 (12) wAngstzom) ;
a=10.23; («Conventional unit cell of ¥Y2Mo0207 in angstromsw)
xparam = 0.3382; charge=4;

950
As m—; {» Spin-orbit coupling paxameter w)

rexpec = {0, 2.9052«Bohrradius~2, 0, 14.3861«Bohrradius~4, 0, 0)};
e= {0, -2/105, 0, -2/315, 0, 0};

Opos= ({1/4 -xparam, 1/8, 1/8}, («Oxygen ion positions »)
{1/8, 1/4 -xpaxanm, 1/8},
{1/8, 1/8, 1/4 -xpazam},
{-1/4 +xpazam, -1/8, -1/8},
{-1/8, -1/4+xparam, -1/8},
{-1/8, -1/8, -1/4¢+xpazam}};

U = Opos;

R = Table[Sqrt [(D[[4, 1]] va)*2 + (U[[i, 2]) ~a) "2 + (U[[i, 3]]~a)"2], {i, 6}];
MatrixForm[N[R]]);

Cvar=Uea;

(+Rotation of z axis to <111> direction »)

o =Arcran[1/V2];
¢=0;
¥ = -AxcTan{l];

A={{Sin[0] »Sin[¥], -Sin[e] «Cos[y], Cosle]},
{Cos{¢] +Cos(¥] - Sin[¢] wCon[6] »Sin[¥], Cos[¢] »Sin(¥] +
Sin{¢] #Cos (0] wCos[¥], Sin[¢] »Sin[6]},
{-8in(¢] «Cos[¥] - Cos[d] »Cos (0] #Sin[)], -Sin[é] #Sin[y] +
Cos{¢) »Cos[6] «Cos[¥], Cos(d] »Sin([6]}};

MatrixForm[Ctrans];

xp = Table[Cp[{i, 111, {1, 6}];
yp = Table[Cp([[i, 2]], {3, €}];
zp = Table[Cp([i, 311, {3, 6}]:
rp = Table([Sqrt [xp[{1]]1 2 + yp([4]]1*2 + zp[[1]]*2], {1, 6}):
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y2mo207.nb 2

(»Tessezral Harmonics exp d in car ian a4 )

1 1 (3242 - x42)
Zao(X_» Yo 2_, % ] = ey - T,

1 [15  (x+2 - y~2)
Zaelxs Yoz = oo Q7 ¢

Pi 42
t ) 3 1 (35244 -30242«742 + 3xr+4)
2 X & — —
ZeolX_»Yor 2_, T 16 vy Yy H

3 5 (7242 - £42) » (X42 - y+2)
Zozo[X o Yoo 2, T 1 = ? E » vy 3

] 3 70 Zw (X*3 -30y*2ex)
z B — —
Zysa[%X_r ¥_0» Z_, s Pvy v H

3 35 (x4 -6x*2ey*2 + Y*4)
Zuol® s ¥ 2, X )= R g - e :

1 13 (231 %246 -315+224wx*2 +1057r48 w242 -5+746)
— i

z X, —
ZolXor Yo 2o mlr N T*6

ZazolX s ¥_v Z_, X 1=
1 2730 (16244 ~ 16% (X*2+Y*2) *242 + (X*2+y*2) *2)
— -
64 Pl r*6

* (42 -y*2);

[ ) 1 2730 (11243 - 32+242) v (x*3 ~3xwy*2) ;
= B — -
Zeyo[x_» Y_r 2, 32 Py vy

( 1 21 13 (11242 -T42) » (x*4 - 6x*2wy*2 + Y*4) :
Z_, T ] % -
Zaso[x_r¥Y_r 2, 32 Tevi vy

t £ 231 26 (X46 -1Sx 42y 2 +15x42ay~4 -Y*6) ;
Zz B —
Zetol®r Y 20 64 \j 231471 -6



Appendix A. Crystal electric field and spin-orbit hamiltonians for YoMo, O

y2mo207.nb

S 4epi qe 3[’9[[1]]:”[[.‘!]]-ﬂ[[ﬂ]]:m[[ﬂ]ll

Yoa (B 2 L",Z;' Zenel BB~ @)

¥ =Chop[{{0, 0, O, O, O, O, O},

{¥2a[2, 220, -2), O, Yaal2, 2220, ~2], 0, O, O, O},
{0, 0, 0, 0, 0, 0, O},
{Yoa [, 240, -2], O,

Vna (6s Zazcr 2], ¥oaléds Z030s =2] ¢+ Yna [8) Z44ee ~2] , O, O},
{0, 0, 0, 0, 0, 0, 0},
{¥na [6, 260, =2], 0, Yua[6:, Ze20., -2],

¥Yna [6s Zesor 2] » ¥na[6/ Betos =2) +» 0/ Yua [6, Zgsor =2]1}1}])5

Matrixrorm(y]
0 00 0 00 0
0.379378 0 0 0 00 0
0 o0 0 00 0
0.102924 0 O 0.284553 0 O 0
"] 0o 0 00 0
-0.0284386 0 0 -0.0135677 0 0 -0.0269321

zcoezt = {{0, 0, 0, 0, 0, O, 0},

{1 s . 2 ,15 0. 0., 0, 0}
_— — - — P ’
¢ YU i’ ‘ !

{0, 0, 0, 0, 0, 0, 0},

3 1, 3 ,s 3 ’70 3 ,35 0. o}
= —— =, 2.2, 2.2
16 gz 8 ?i’ 8 Pi’ 16 i’ 0

{0, 0, 0, 0, 0, 0, O},

1 ’ 13 1 ’2730

—-' —. o, —' —

2130 ECERY
'\j EPSTy ETTRS TR A

(v & ‘ op multiplicative fact »)

ro = {{0, 0, 0, O, O, O, O},
{3, o, 6, 0,0, 0, 0},
{0, 0, 0, 0, 0, 0, 0},
{60, 0, 3, 3, 12, 0, 0),
{0, 0, 0,0, 0, 0, 0},
{180, 0, 24, 18, 60, 0, 360)});

cefc = Chop [Axray[cefcelement, {6, 7}]}];
Do[cefcelemant(n, m] = y[[n, »]] » (~charge) »2Zcoeff[(a, m])] »
rexpecf(n]] »€[[n]] «F0{[n, m]] » VunitTHz,
{an, 1, 6}, (m, 7}];
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y2mo207.nb 4

{»weStevens’ operator equivalent matricesses)
020 = DiagonalMatxix{ {5, 0, -3, -4, -3, 0, 5}];

MatzrixForm{o20)
S0 0 0 0 00O
600 0 0 0 00O
00-3 0 0 00
00 0 -4 0 00
00 0 0 -3 00
00 0 0 0 00
00 0 0 0 0S5

©40 = DiagonalMatrix({3, -7, 1, 6, 1, -7, 3}];
MatrixPorm{odo]

0DO0OO0CO0OO0OO0OW
1
oooooqo
o000k OO
oooOonOoOOO
OO roooo
1
QOOOOO
WwooOooOooo

o

ot3= {{0, 0, 0,35, 0,0, 0},
{0, 0, 0, 0, V10, 0, 0},
{0.0. 0,0, 0, -V10., 0},
{3vV5.,0.0,0,0,0, -3V5},
{0. V10, 0, 0, 0, 0, 0},

{0, 0. -¥10, 0, 0, 0, 0},

{0. 0. 0, -3¥5. 0, 0, 0}};

MatrixYorm[od43}
) 0 0 6.7082 0 o 0
o 0 0 0  3.16228 ° 0
() 0 0 0 0 -3.16228 0
3Vs 0 0 0 o 0 -345
¢ Vo o 0 0 ) 0
0 0 -v1o 0 0 0 0
0 0 0 -345 0 0 0
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y2mo207.nb

(vww#Full hamiltonianwes)
mrx = (cefc[[2, 1]] »020) + (cefc[{é, 1]] »od0) + (cefc{[4, 4]] »v043);

MatxixPForm[mzrx]
582.842 0 0 1011.17 4] 0 0
0 -456.164 0 0 476.672 0 0
0 0 -167.24 0 0 -476.672 0
1011.17 0 1] 81.123 0 1] -1011.17
0 476.672 0 [+] -167.2¢8 ] [+]
1] [} -476.672 0 0 -456.164 0
0 0 1] -1011.17 [] 1] 582.842
{val, vec)} = Chop(Bigensystem[mxx]];
MatrixForm[val]
1783.84
-1119.87
-809.784
-809.784
582.842
186.38
186.38
NatrixPorm[vec]
-0.541476 0 0 -0.643123 0 0 0.541476
-0.454757 0 0 0.765763 0 0 0.454757
0 0.80313 0 0 -0.595803 0 0
0 0 -0.595803 0 0 -0.80313 [¢]
-0.707107 0 [} 0 0 o] -0.707107
0 0.595803 o] 0 0.80313 0 0
[ [¢] 0.80313 0 4] -0.595803 0

(» Lowest 3 eigenvalues and corresponding eigenvectors =)

ecef = {Abs{valf3] - valf2]]., 0, Abs[valf4] - valf2l]};

MatrixPorm[ecef]
310.087
310.087
ug = Transpose[ (vecl3]., vec2l., vecfit]}]:
MatrixPorm(ug)
1] -0.454757 [¢]
0.80313 0 4]
(1] [+] -0.595803
0 0.765763 0
-0.595803 0 0
0 0 -0.80313

0 0.454757 0
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y2mo207.nb 6

(v Angular momentum Operators w)
Lz = DiagonalMatrix({3, 2, 1, 0, -1, -2, -3}];

MatrixForm{Lz)
3 000 0 0 O
c 200 0 0 O
co0o100 0 O
c o000 0 0 O
0000-1 0 0
0000 0 -2 0
0000 0 0 -3

Lp = Axray([Lpelenent, {lsize, lsize}];

Do[1£[n a= nprime - 1, Lpel n, nprime) = VL (L+1) - (L-oprime+1) (L-nprime+2),
Lpelement(n, nprime] = 0], {n, lsize}, {nprime, 1size}]:
MatrixForm[
Lpl
0ve o 0 0 0o o0
0 0 V10 o 0 o 0
0 0 0 2v3 o o o
00 0 0 2v3 o o
o 0 0 0 0 V1o o
o 0 o 0 0 0 V6
0o 0 o 0 0 o 0
Ln = Transpose{1p] ;
MatrixForm[Lm]
o o 0 0 0 0 0
Ve o 0 0 0 0 o0
0 Vio o 0 0o o0 o
0 0 2v3 o v 0 0
o o© 0 2v3 0 o0 0
o 0 0 0 V10 o0 o
0 0 0 0 o 6 o

Lx=0.5 (Lp+1Lna);
Ly=I(-0.5(Lp~-Lm));

(#e+ Add in effect of spin orbit coupling wwe)

1lzg = Transpose[ug] .Lz.ugs

Matrixrorm([lzg]
0.935055 0. 0.
0. -4.60352x10°1¢ 0.

0. 0. -0.93505S
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y2mo207.nb 7

1pg = Chop [Transpose [ug] .Lp.ug];

Matrixrorm[lpg]
0 0 0
[ -2.4751 0 0 ]
0 -2.4751 0
ilmg = Transpose[lpg];
Matrixrorm[lmg)
0 -2.4751 0
[ 4] ] -2.4751 ]
0 0 0

Sz = DiagonalMatrix[{1.0, 0, -1.0}];

8Sp = Array[spelenent, {ssize, ssize}];
Do[u[:.\ =s nprime - 1, spelement(n, nprime] = V8 (§+1) - (8 ~oprime + 1) (8 -nprime+2) ,
spelenent (n, nprime) =» o.o] + {a, ssize}, {aprime, ui.zc)] H

Sm » Transpose[5p] ;

LLz = Array{LLzelem, {3 ssize, 3 ssize}];
DojLlzelea([n, =] = 0, {n, 3 ssixe}, {m, 3 ssize}];
Do{LLzelen[ssize (n~1) +nm, ssize (n-1) +=x] = 1zgn, n}, {n, ssize}, {m, ssize}];

Matrixrorm[Chop [LLz]]

0.9350585 0 4] 0 0 0 0 0 [}
[} 0.935055 0 0 00 [} 0 0
0 0 0.935055 0 0 O 0 0 0
0 0 ] [ ] 0 0 0
0 1] 1] 000 0 0 0
[} 0 0 0 00 0 0 0
0 0 0 0 0 0 -0.935055 0 0
0 0 0 000 0 -0.935055 0
[} 0 0 0 0 ¢ 0 0 ~0.935055

LLD = Axray{LLpelem, {3 ssize, 3 ssize}];

Do{Llpelem(n, »] = 0, {n, 3 ssize), {m, 3 ssize});

Do[If([ml =x m, LLpelem[ssize (nl-1) +ml, ssize (n~1) +m] = 1pgfal, n], 0],
{n, ssize}, {nl, ssize}, {m, ssize}, {ml, ssize}];

MatrixForm[

up]
0 0 0 0 0 0 000
0 0 0 0 0 ] 000
[(] 0 0 0 1] [+] 000

-2.4751 0 0 (<] 0 4] 000
0 -2.4751 0 0 0 0 000
0 [ -2.4752 0 0 0 000
[} 0 0 -2.4751 0 0 000
0 0 0 0 -2.4751 0 000
0 0 0 0 0 -2.4751 0 0 O
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y2mo207.nb 8

LLm = Transpose[LLD] ;

MatrixForm[LLm)
00 0 -2.4751 0 0 0 0 Q
000 0 -2.4751 Y] 4] 0 0
000 0 0 -2.4751 0 0 0
c 00 0 0 0 -2.4751 0 0
000 0 0 0 0 -2.4751 0
000 [} 0 0 0 0 -2.4751
000 [¢] 0 0 0 "] 0
000 0 4] 0 0 0 0
000 0 0 0 1] 0 0

§8z = Array[SSzelem, {3 ssize, 3 ssize}];

Do[SSzelen[n, m] = 0, {n, 3 ssize}, (m, 3 ssize}];

Do[SSzelen[ssize (n-1) +m, ssize (n-1) +n] = 8zfm, n], {n, ssize}, (=, ssize}];
NatrixForm[8§z]

1.0 0 o0 0 0 0 O
o0 0 00 0 00 O
0 0 -2. 00 0 00 O
o0 0 1.0 0 0 0 O
o0 0 00 0 0O O
60 0 0 0 -1. 0 0 O
00 0 00 0 1. 0 O
o0 0 00 0 00 O
00 0 00 0 0 O -1.

8Sp = ArrayiSSpelem, {3 ssize, 3 ssize}]};

Do[SSpelea[n, m) = 0, {n, 3 ssize}, {(m, 3 ssize});

Do[If[{nl ==n, SSpelem[ssize (al -1) +ml, ssize (n~-1) +n] = Spml, n], 0],
{n, ssize}, {nl, ssize)}, {m, ssize}, (m1, ssize}];

88m = Transpose [8Sp] ;

1s = Array[lselement, {3 ssize, 3 ssize}];
Do[1selement[ssize (al-1) +ml, ssize (a-1) +n] =
1zg{inl, n} Szfwml, m} + % 1pginl, n] Smfml, o) + % 1mgnl, o] Splml, =3,
{a, ssize}, {nl, ssize}, {m, ssize), {ml, ssize}];

hsos=als;
MatrixFora[Chop[hso]]
13.3247 1] 0 0 -284.%% 0 0 0 0
0 0 0 0 0 ~24.94 0 0 (1]
1] 0 -13.3247 0 0 ] (] ] ]
0 0 0 0 0 (] 0 -24.9%4 0
-24.94 0 0 ] 0 0 0 o} -24.94
[+] -24.%48 0 0 0 0 0 0 0
0 0 0 0 0 0 -13.3247 0 0
0 0 1] -24.94 0 0 0 0 0
0 0 0 0 -24.94 0 (] o 13.3247
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y2mo207.nb 9

fg = ay [ fgelen, {3 ssize, 3 ssize}];
Do[ecefgelen[ssize (a-1) +m, ssize (n-1) +m] =
ecefn], {n, ssize}, {m, ssize}];
Do[If(n # nprime, ecefgelen[n, nprime] = 0], {n, 3 ssize}, {oprime, 3 ssize}];

MatrixPorz[ecefg])
310.087 [} 0 000 0 0 "]
0 310.087 0 000 0 [+] 0
0 0 310.087 0 0 © 0 0 0
0 [} 0 000 0 0 0
0 0 0 000 0 0 0
0 0 0 000 0 0 0
"] 0 0 0 0 0 310.087 0 1]
0 [} 0 000 0 310.087 0
0 [} 0 000 0 0 310.087
MatrixForm[Chop [hso + ecefg]]
323.412 [} 0 0 -24.94 0 0 0 o]
0 310.087 0 0 0 ~-24.94 0 0 0
0 0 296.762 0 0 0 2] 0 0
0 0 0 0 0 0 0 -24.9¢ 0
-24.94 [} 0 0 ] 0 0 0 -24.948
] -24.9¢ 0 0 0 [+] 0 0 0
0 0 0 0 0 0 296.762 0 [+]
0 0 0 -24.94 0 0 0 310.087 0
0 0 0 0 -24.9¢4 0 4] 0 323.412
{valso, } = Chop [E4 {hso + ecefgl]s

(» Eigenvalues and corresponding eigenvectors of CEF + spin-orbit hamiltonians w)

MatrixForm{valso]
327.21¢
323.412
312.08
312.08
296.762
296.762
-3.80183
-1.99309
-1.99309
MatrixForm|{vecso]

6.703034 0 [+} 1] -0.10717 0 0 0 0.703034
0.707107 0 [¢] [¢] 0 0 0 0 -0.707107
1] 0 0 0.0796615 0 0 0 -0.996822 0
0 -0.996822 0 0 0 0.0796615 0 0 0
0 0 1. 0 1] 0 0 1] 0
0 0 [+} 0 0 0 1. 0 0
-0.075780S 0 [} 0 -0.994241 1] 0 0 -0.0757805
0 0 0 -0.996822 0 0 0 -0.0796615 0
'] -0.0796615 0 0 0 -0.996822 0 0 [+]



Appendix B

Magnetic field map of HELIOS solenoid

Relative difference in magnetic field (ppm)

80 r b) 1
60 -
40 F -
20 r radial -
0 : . ; !

0 2 4 6 8 10

Distance from origin (mm)

Figure B.69: Magnetic field map of HELIOS solenoid in the a) axial and b) radial direc-
tions.
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Appendix C

Cooling polycrystalline samples in a dilution refrigerator

The issues of thermometry and adequate thermal contact with the sample under inves-
tigation are always of concern during experiments at millikelvin temperatures. In an
insulating material well below its debye temperature the phonon mean free path is even-
tually limited by the spatial distribution of imperfections, impurities or the size of the
specimen. The temperature dependence of the thermal conductivity is thus that of the
specific heat, proportional 7. However, this result is dependent on the crystallinity, as
indicated by experiments on glasses and amorphous materials [216] below 1 K. In these
cases the thermal conductivity goes as T2.

To check the actual sample temperature of the semiconducting or insulating pow-
der samples described in this thesis, a RuOs ceramic thermometer was calibrated using
nuclear orientation. %°Co nuclei are unstable, undergoing 3 decay and subsequently emit-
ting 2  rays, which are detected with a Nal crystal. The emission probability is spatially
anisotropic and depends on the initial nuclear spin direction. The nuclei must however
be preferentially oriented in a particular direction. Cobalt orders ferromagnetically be-
low 1388 K [217] and hence in a single crystal which has predominately aligned domains
the electronic spins are also preferentially aligned. The nuclear spins are thus also po-
larised through the hyperfine interaction. The decay becomes increasingly anisotropic as
the temperature drops below ~ 50 mK, or equivalently when the temperature becomes
comparable with the splitting between nuclear hyperfine energy levels.

To calibrate the RuQO, resistance thermometer, it was mounted next to two $°Co
single crystals on a sample holder like that shown in Fig. C.70 and loaded into the
dilution refrigerator. The results of that calibration are summarised in the first half of

Table C, which lists the resistances of RuO, thermometers in various positions when
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Figure C.70: Sample holder for a top loading dilution refrigerator with the sample of
Y2MosO7. The electrical connections for the thermometer are imbedded in teflon, shown

at the bottom of the photograph. (S. R. Dunsiger)
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Figure C.71: Y;Mo,07 prepared for a temperature calibration. The two pellets are
wrapped with the copper wire leads attached to a RuO, thermometer. The silver plate
behind is ~ 2.5 cm long. (S. R. Dunsiger)
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the temperature at the sample position is either 38 or 53 mK, as measured by the ¥Co
signal. The anisotropy as a function of temperature had been calibrated by Oxford
Instruments for the particular geometry used. Since their thermal conductivity is much
greater, the RuO, resistance thermometer is actually cooled through its two copper
leads. However, to thermally isolate the sample thermometer from room temperature
and prevent it from being warmed through the external leads, ~ 3 cm of niobium wire
was soldered between the copper leads and external 4 wire electrical connection. Niobium
becomes superconducting at 9.26 K [217]. As the temperature is reduced below its critical
temperature, the number of superconducting electrons which are in a zero entropy state
and hence cannot transport heat increases. A single crystal of niobium thus has a thermal
conductivity of ~ 3 x 1073 W K~!m™! at 50 mK, approximately 3 orders of magnitude
lower than commercial copper wire [218].

The calibrated RuO» thermometer was then mounted on a sample of YoMo,O7, as
shown in Fig. C.71. The copper leads were wrapped around the sample several times and
GE varnished in place. A piece of cigarette paper was placed over the leads to ensure
there was no electrical connection to the 0.025 mm thick silver foil folded over the top.
The results of these measurements are summarised in Table C, where the resistance of
various thermometers in different positions has been monitored over the course of ~ 1.5
hours. Increasing thermometer resistance corresponds to decreasing temperature.

The temperature at the base of the mixing chamber is monitored by two thermome-
ters, a carbon resistor calibrated against germanium by Oxford Instruments and an un-
calibrated RuQs resistor. The resistance of the carbon thermometer is quoted in Table C.
It is well known that carbon thermometers show hysteresis effects when warmed up to
room temperature and cooled again [219] but the changes are typically less than 1% over
long periods of time [218]. This has been confirmed between 2 K and 50 mK by noting
the variation in the resistance of the RuO, thermometer over a timescale of a number
of years at the same nominal temperature given by the carbon resistor. The calibration

has also been checked below 50 mK using nuclear orientation.
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Temperature (mK) Sample Sample cup Mixing chamber

(Nuclear orientation) Resistance (k?) Resistance (k2) Resistance (k<2)
(RuOy) (RuOy) (Carbon)

89Co in sample position

53 8.65 (1) 9.10 (1) 2.197 (8)

38 11.56 (2) 12.40 (2) 39.9 (1)

Y>Mo,07 in sample position

9.93 (1) 16.15 (1) 38.5 (5)
10.53 (1) 16.82 (2) 42 (1)
11.00 (1) 17.97 (1) 44 (1)
11.22 (1) 18.04 (1) 45 (1)

Table C.12: Characteristic resistances on cooling a powder sample in a dilution refriger-
ator.

A second RuO, resistor is positioned on the copper “sample cup” at nominally the
same distance below the mixing chamber as the sample. This thermometer provides the
best indication of the temperature closest to the sample for those measurements where
there was no actual sample thermometer.

As may be seen from Table C, while the mixing chamber and sample holder tem-
peratures steadily drop below 38 mK over the course of roughly 1.5 hours, that of the
Y2Mo,0O7 pressed powder plateaus at ~ 40 mK. It should be noted that the base tem-
perature of a dilution refrigerator may be affected by heat leaks from radiation shining
through the thin windows over the sample position, wiring, vibration or residual exchange
gas. While the cooling power of the dilution refrigerator is 400 uW at 116 mK, it drops
to 30 uW at 45 mK and only 15 at 24 mK. After the majority of the experiments de-
scribed in this thesis had already been completed, the base temperature was reduced by
tightening the cold finger to the mixing chamber, improving thermal contact. Hence no
data has been reported below 50 mK for the powder samples, where uncertainties about

the real sample temperature become more pronounced.



