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Abstract

This work consists of two separate parts. In the first part we measure charge inhomo-

geneity in the CuO2 planes of the cuprate compound YBa2Cu3Oy(YBCO) at different

doping levels. One of the key challenges in the cuprates study is to determine whether

the charge inhomogeneity found in some of these compound, is an essential part of

the mechanism of superconductivity. Bulk measurements of the plane anisotropy for

YBCO have been done so far only for the optimally doped compound. Our objective

in this part is to detect possible charge inhomogeneity in underdoped YBCO, and see

if there is a correlation between the electronic structure of the CuO2 planes and the

dopant atoms. This will alow us to tell if models that predict inhomogeneity without

taking into account the dopant, are relevant to high temperature superconductors

(HTSC) or not.

For this purpose we perform Nuclear Magnetic Resonance (NMR) and Quadrupole

Magnetic Resonance (NQR) measurements, on fully 63Cu enriched YBCO. We com-

pare a new method, called Angel Dependent NQR (ADNQR), with the nutation

spectroscopy NQR and the conventional NMR. We show that the ADNQR is more

sensitive to the inhomogeneity. Finally, we conclude that any charge inhomogeneity

in the CuO2 planes is found only in conjunction with oxygen deficiency in the chains.

In other words, if there is a phase separation in the planes in the YBCO compound,

it is correlated with the O dopant atoms.

xiv



ABSTRACT xv

Upon further underdoping of cuprates they lose their inhomogeneity and become

magnetically ordered. In the second part of this thesis we use muon spin rotation to

determine the zero temperature staggered antiferromagnetic order parameter M0 ver-

sus hole doping measured from optimum ∆pm, in the (CaxLa1−x)(Ba1.75−xLa0.25+x)Cu3Oy

system. In this system the maximum Tc and the superexchange J vary by 30% be-

tween families (x). M0(x, ∆pm) is found to be x-independent. Using neutron diffrac-

tion we also determine the lattice parameters variations for all x and doping, and

estimate the hopping rate t and the superexchange J from simple structure consid-

erations.

We show that the origin of the different energy scales between the CLBLCO

families is mainly the different in-plane buckling angles. The comparison between the

t/J ratio extracted from the neutron measurements and the doping dependence of

the order parameter, suggests that at zero temperature for this compound the order

parameter as a function of mobile holes is independent of t/J .

We offer two possible explanation for our results. One is that at low temperatures

the effective Hamiltonian is given by a t-J model but with an effective t that is

proportional to J . The second is that the destruction of the AFM order parameter is

not a result of single holes hopping and should be described by a completely different

Hamiltonian, perhaps hopping of boson pairs.
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Chapter 1

Charge Inhomogeneity in YBCO

Using NQR

The parent compounds of the cuprates superconductors are antiferromagnetic in-

sulators. Hole doping the CuO2 planes destroys the long range antiferromagnetism.

Above a certain doping level, superconductivity emerges. This doping creates natural

inhomogeneity.

In the first part of this thesis we use nuclear magnetic resonance (NMR) and

nuclear quadrupole resonance (NQR) in order to measure charge inhomogeneity in

the CuO2 plane of the YBa2Cu3Oy(YBCO) compound. We compare three different

techniques to measure this inhomogeneity. The question of the origin of the charge

inhomogeneity seen in some of the cuprates is a very basic one in our understanding

of these compounds.

One of the main questions in this field is whether charge and spin inhomogeneity

in the CuO2 planes are essential to the mechanism of superconductivity in cuprates.

For some of these materials, there is evidence for a phase separation with segregated

3
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hole-rich and hole-poor regions. It has been suggested that this phase separation,

possibly in the form of strips, explains the unusual properties of the cuprates and

leads to the superconductivity. There are several theoretical work (For examples see

ref. [6][7][8][9][10][11]), that try to show that the phase separation is a characteristic

of the Hubbard model, and therefore an intrinsic property of the CuO planes.

According to the model by Emery and Kivelson [12], the first stage in the cooling

process is the formation of charge inhomogeneity in the form of strips at a temperature

T0. The segregation of holes leaves the rest of the system as an antiferromagnetic

background. This phase separation results in the opening of the pseudo gap. Further

cooling results in the formation of local spin pairs, that hop in and out the stripes

to the magnetic background, creating a spin gap at a temperature T*. Finally at Tc

there is an establishment of phase coherence between the pairs.

Indeed, inhomogeneity was found in La2−xSrxCu1O4 (LSCO) by several methods.

Nuclear Quadruple Resonance (NQR) measurements show that there is a distribution

of T1 (nuclear spin-lattice relaxation rate) in the spectrum that can be attributed to

a spatial variation of the hole concentration [13]. Phase separation in LSCO was also

found with neutron scattering [14] and muon spin relaxation (µSR) [15],[16].

In Addition, STM experiments on underdoped Bi2Sr2CaCu2Oy (Bi-2212) showed

local density of states modulations [17] and inhomogeneity of the superconducting

gap on the samples’ surface, that can be associated with the distribution of holes in

the planes [18],[19],[1]. An example of a picture taken with STM by M. Vershinin

et al. [1] is presented in Fig. 1.1. This picture shows the spatial dependence of the

density of state at different energies at 100K, indicating spatial modulation in the

electronic excitations (with energies below the pseudogap energy).

In YBCOy, phase separation was found at very low doping levels, up to YBCO6.35,
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with neutron scattering from phonons related to charge inhomogeneity [20]. µSR mea-

surements show the existence of a spin glass phase for a similar doping range [21][22].

89Y NMR study in YBCOy for y = 7 and y = 6.6 showed no phase separation at

all [23]. The highest doping in which magnetic order was found in YBCO was in

YBCO6.6 [24] using neutron scattering.

In light of the above, our main question can be divided into the following subitems:

• Is charge inhomogeneity a necessary phenomenon for HTSC? If it is, then it

should exist in all HTSC compound, including YBCOy, which is considered by

many, the cleanest system since the dopant has a natural place to go into.

• Does it exist only on the surface, or can it be detected in the bulk as well?

Clear detection of charge inhomogeneity in YBCOy is nearly impossible, since

STM measurements are very difficult due to oxygen loss in vacuum and surface prob-

lems. Different STM experiments in this compound showed an inhomogeneous [25] or

relatively homogenous surface [26], depending on the surface preparation procedure.

However, an NQR experiment is sensitive to the charge distribution in the bulk and

not just on the surface, like an STM experiment. We perform NQR measurements

on the Cu nuclei, since we are interested in the charge distribution in the Cu-O

planes. The YBCO compound has narrow NQR resonance lines, which allow us to

distinguish between different Cu(2) resonance lines, and associate each line with a

local environment.
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Figure 1.1: STM measurement taken by [1]. These are real-space conductance maps
at 100K, showing the appearance and energy evolution of density of
states modulation along the Cu-O bond directions.



Chapter 2

The experimental methods

2.1 The YBCO Compound
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Figure 2.1: Phase diagram of YBCOy

In this part we chose to work with the high temperature superconductor (HTSC)

compound YBa2Cu3Oy (YBCOy). The phase diagram of this compound is shown

7
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Figure 2.2

in Fig.2.1. At low temperatures it is tetragonal for y < 6.4, and orthorhombic for

y > 6.4. The (YBCOy) unit cell is shown in Fig. 2.2.

Apart from the CuO2 planes, there are also one dimensional Cu-O chains. The

copper in the chains is termed Cu(1) and the copper in the planes Cu(2). In YBCO6

there are no Cu-O chains, and the compound is an antiferromagnetic insulator, as

shown by neutron scattering experiments [27]. Doping is achieved by inserting ad-

ditional oxygen atoms, which form the Cu-O chains. At an oxygen content of 6.4,

antiferromagnetic long range order disappears and the superconducting phase starts

developing.

2.1.1 Samples preparation

The samples are prepared by solid state reaction. Raw powders are machine milled

and baked in air at 950 ◦C for one day and re-grounded repeatedly 3 times. Then the
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powder is pressed into pellets, and the pellets are sintered for 70h in flowing oxygen

at 960 ◦C, and cooled at a rate of 10 ◦/h. The different oxygen content is achieved

by reduction in a tube furnace in flowing oxygen at the right temperature. The

reduction temperature determines the oxygen doping level in the material. After 24h

in the furnace the samples are quenched in liquid N2. The very underdoped samples

(y < 6.6) are quenched in liquid Ar. The reason for that is that the liquid N2 is

not pure and contains O2 molecules. At low doping levels there is a greater chance

that these molecules will penetrate the sample during the quenching. This causes the

samples to become oxygen inhomogeneous and the transition to superconductivity

wider [28]. The oxygen content is measured by iodometric titration; this method is

capable of measuring y with an error of ±0.01.

Enriched samples

Previous Cu NQR measurements on YBCO (see Ref.[29],[30],[31],[32]) were performed

on samples containing both Cu isotopes, Cu63 and Cu65, so the frequency lines con-

sisted of doublets of Cu63-Cu65. In this work, for a clearer understanding of the NQR

signals, the YBCO samples were all made of enriched copper, meaning that these

samples contained only the Cu63 isotope. This allows us to distinguish between the

different contributions to the NQR line from different local environments.

Orientation

The ADNQR technique requires oriented samples. In the orientation process about

1gr of powder, mixed with StayCast glue, is inserted into a Teflon cylinder 1.2cm

in length and 0.5cm in diameter. The sample is then inserted into a magnetic field

of 8T, and shaken for 30 minutes at room temperature. The shaking is done by
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connecting it to an electromagnetic relay with a voltage of 10V and 25Hz square

wave. The susceptibility of each grain in the powder, which is assumed to be a single

crystal, creates the maximum magnetic moment in the direction of the crystal c axis.

Hence, the orientation process aligns the YBCO grains so that all the (00l) planes are

perpendicular to the magnetic field. After the orientation we identify the ẑ direction

of the YBCO crystal with the magnetic field direction.

2.2 Nuclear Magnetic Resonance (NMR)

In a NMR experiment a nucleus with spin I is immersed in a static magnetic field H0,

and exposed to a second oscillating magnetic field that causes transitions between the

nuclear energy levels.

The energy of a single nucleus with magnetic moment µ in the presence of a

magnetic field H = H0ẑ is:

Hz = −µ ·H = −γ~I ·H = −γ~H0Iz, (2.1)

where γ is the gyromagnetic ratio of the nucleus. This Hamiltonian, describing the

Zeeman interaction, has very simple eigenvalues:

E = −γ~H0m m = I, I − 1, ...,−I (2.2)

In a resonance experiment, transitions between the energy levels are forced by

applying an oscillating magnetic field perpendicular to the static field. This adds a

time dependent perturbation term to the Hamiltonian of the form:

HRF = γ~BxIx sin ωt (2.3)

where ω = 2πf , f is the transmission frequency ,Bx is the amplitude of the alternating

field. The operator Ix has matrix elements between states m and m′ that vanishes
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unless m′ = m± 1. Hence this term will cause transitions between levels adjacent in

energy when

~ω = ∆E = γ~H0 (2.4)

or

ω = γH0 (2.5)

This resonance condition is met when the nucleus is entirely isolated from its

surroundings. A nucleus in solid experiences several interactions, and other terms

should be added to the Hamiltonian. The magnetic interaction between the nucleus

and the surrounding electrons adds terms of the form: σγ~H0Iz, where σ is the

magnetic shift tensors. These shifts can be Knight shifts (for metallic samples),

chemical shifts (for diamagnetic samples) or paramagnetic shifts (for paramagnetic

samples). Other possible terms are from dipolar interactions and the quadrupolar

term which will be discussed next. The amount of shift will generally depend on

the orientation of the nuclear environment relative to the applied field. For a single

crystal, the resonance condition depends on the polar angles θ and φ, between the

crystal axes and H0. For a powder this condition should be averaged over all possible

orientations, and the result is a powder pattern.

2.2.1 The quadrupolar term

Nuclei with spin greater then 1/2 have an electric quadrupolar moment, for these

nuclei a quadrupolar term is added to the Hamiltonian. The origin of this term is

the electrostatic interaction between the charge distribution of the nucleus and the

potential V of the surrounding charges. These nuclei can be viewed as positively
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charged oval objects. Different orientations of the nucleus with respect to the sur-

rounding charges will result in different energy levels. The energy difference between

one configuration and another is determined by the Electric Field Gradient Tensor

(EFG): Vij = ∂2V
∂xi∂xj

.

The axis directions of the EFG tensor can be chosen so that the tensor is diagonal;

these directions are called the principal axis of the EFG. Due to the Laplace equation

(Vxx + Vyy + Vzz = 0), the three parameters of the EFG can be replaced by only two

parameters, νq and η. The quadrupolar term of the Hamiltonian can be written as

[33]:

HQ =
~νq

6
[3I2

z − I2 + η(I2
x − I2

y )] (2.6)

where:

Iα are the nucleus spin operators; νq is a frequency scale, determined by the EFG

component Vzz, and the quadruple moment of the nucleus Q; η = Vxx−Vyy

Vzz
is the

asymmetry parameter with the convention |Vzz| ≥ |Vyy| ≥ |Vxx|, and therefore 0 ≤
η ≤ 1. In the case of axial symmetry, η = 0. (See appendix A for the full deviation

of the quadrupolar Hamiltonian).

In the case of strong H0 the quadrupolar term can be treated as a perturbation

to the Zeeman Hamiltonian. In first-order perturbation theory the NMR transi-

tions consists of unshifted central resonance, and 2I − 1 ”satellite” lines. When the

quadrupolar effect is large enough to require second-order perturbation theory, the

central line is also shifted, as well as the satellites [34].

To the first order in perturbation theory the NMR transitions resulting from the

Zeeman and quadrupolar terms only (neglecting other shifts) are:

νm↔m−1 = γH0 − νq[
1

2
(3 cos2 θ − 1)− 1

2
η sin2 θ cos 2φ](m− 1

2
). (2.7)
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Figure 2.3: Theoretical powder average NMR lines for spin 3/2 calculated from
Eq. (2.7).

For a spin 3/2 nuclei, The NMR line consists of 1 central line and 2 satellites.

Fig. 2.3 show a theoretical NMR line for spin 3/2 in a powder for different values

of η, calculated from Eq. (2.7). For η = 0 there are two clear satellites, however for

larger η it becomes more difficult to determine the location of the satellites. In this

work we measure partially oriented powder for which this result is not exact. But

still it shows the general trends.

2.2.2 FID and spin echo

Before the RF pulse is applied, the static field induces a net polarization in the ẑ

direction. Applying the RF pulse leads, after some time, to a net magnetization in

the x̂ direction. When the pulse ends the spins start to rotate about the direction of
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Figure 2.4: A schematic description of a spin echo sequence. The two pulses are
followed by a Gaussian shaped echo. The schematic polarization graphs
are for spins 1/2 in NMR
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the static field. The voltage induced in the coil after the pulse will be [35]:

V ∝ sin(
√

3γBxtp) cos ωt, (2.8)

where tp is the duration of the pulse and t is the time measured from the end of the

pulse. Due to relaxation effects the magnitude of the polarization vector will decay

with time. The decaying signal is called Free Induction Decay (FID). The main

shortcoming with FID is that the signal appears immediately after the pulse. Due to

the intensity of the pulse the electronics in the experiment is usually very noisy after

the pulse, and the FID signal in mixed with this noise. This problem is solved by the

spin echo π/2− τ − π sequence.

A π/2 pulse is a pulse with length tπ/2, during which the net polarization rotates

from the ẑ direction to the x-y plane. When the pulse ends the spins start to rotate

in the x-y plane and begin to dephase. After a time τ a second pulse (called the

refocusing pulse) with length 2tπ/2 is applied. This pulse rotates the magnetization

by 180o about the x̂ axis back to the x-y plane. The pulse causes the magnetization

to rephase and produce a signal called an echo after a time τ from the second pulse.

A schematic description of a spin echo sequence in NMR is shown in Fig. 2.4.

2.3 Nuclear Quadruple Resonance (NQR)

In a pure NQR experiment there is no permanent magnetic field H0, and the hamil-

tonian consists of only the quadrupolar term shown in Eq. (2.6). For the spin 3/2

copper nucleus, the quadrupolar Hamiltonian has two energy levels (one for spin ±1/2

and the other for spin ±3/2), and therefore only one resonance frequency, given by:

fNQR = ~νq

√
1 +

η2

3
. (2.9)
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(see appendix A for more details).

An NQR experiment on a nuclear spin 3/2 is very similar to a NMR experiment

on a nuclear spin 1/2. However, in NQR on spin 3/2 the situation is slightly more

complicated. Since for the NQR Hamiltonian there are two energy levels, one for spin

±1/2 and the other is for spin ±3/2, there is no net polarization in the ẑ direction.

A spin echo sequence in an NQR experiment is based on the fact that for a spin 3/2

nucleus, the energy levels can be viewed as two sets of a two level system. The first

set, with sz = 3/2 and sz = 1/2, can be viewed as a spin I1 in a field H0 (so the total

spin is pointing in the ẑ direction); a second set with sz = −3/2 and sz = −1/2 can

be viewed as spin I2 in a field −H0 (so the total spin is pointing in the −ẑ direction).

The π/2 pulse rotates the spins about the x̂ axis to the x−y plane; the spins are now

in the ŷ and −ŷ direction respectively, and there is still no net magnetization. After

the pulse, I1 and I2 are rotating in opposite directions (according to H0 and −H0),

and a magnetization is obtained in the x̂ direction. The spins rotate in this plane and

begin to dephase. After a time τ the refocusing pulse is applied and rotates the spins

by 180o about the x̂ axis back to the x − y plane. This causes the magnetization to

at least partially rephase and to produce an echo.

2.3.1 The asymmetry parameter in YBCO

In this work we measure the YBCOy compound (see section 2.1). For the copper in the

CuO2 plane in YBCO7 and YBCO6, the EFG principle axis are known experimentally

[36][37]: ẑ is the ĉ direction and x̂ and ŷ are directions in the CuO2 plane. Assuming

that the directions are doping independent, νq is an indication of the site the nuclear

sits in, and η is a measure of charge isotropy of the CuO2 plans. When these planes

are homogeneous with local xy rotation symmetry, η = 0. In contrast, when the
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Figure 2.5: A toy model calculation for |η| in the presence of charge strips in the
CuO2 plane. See text for details.

planes are inhomogeneous, duo to phase separation as in the case of strips, the xy

symmetry is lost on the boundary between the hole-poor and hole-rich strips, and

we expect η 6= 0. This situation is demonstrated, for simplicity, in Fig. 2.5 obtained

using a toy model. In this model, a plane of a square lattice with total charge Q is

sandwiched between two similar planes with total charge −Q/2 each. The electric

field of each ion is screened with a screening length of two lattice sites. The figure

shows only the central plane. The charge in this plane is distributed in a form of

strips, and η is calculated numerically from Eq. (2.29) and shown along one line of

ions. This figure demonstrates that as a result of the strips η 6= 0 for all nuclei on the

boundary between strips, though the lattice is square.

In the standard NQR experiment, η and νq from Eq.(2.9), cannot be separately

determined. In the following sections we review two methods that use NQR measure-

ments in order to determine η and νq.
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2.4 Nutation Spectroscopy

The nutation spectroscopy NQR is a method in which the signals are measured as a

function of the duration of the rf excitation pulse [38][39]. This method is used to

determine the asymmetry parameter η.

To explain this method we start with a single nucleus with axially symmetric

quadrupolar axis (η = 0), in zero static magnetic field, under on-resonance rf pulse.

For the rf magnetic field H1 we define the rotating frame frequency ω1 = γH1. The

strength of H1 in a frame rotating about the EFG axis at the quadrupolar frequency,

depends on the angle θ between the coil and the EFG. The nutation frequency is

given by:

ωN =
√

3ω1 sin(θ/2) (2.10)

The voltage induced in the coil by the precessing magnetization following the rf

pulse is also proportional to sin θ.

After an FID pulse of duration tp, the signal intensity after a time t is given by:

I(tp, t, θ) ∝ sin θ sin(ωN tp) sin(ωQt) = sin θ sin(
√

3 sin(θ/2)ω1tp) sin(ωQt) (2.11)

where ωQ = e2qQ/2h is the quadrupolar frequency in the case of η = 0.

From Eq. (2.9), when the nucleus quadrupolar axis are not axially symmetric, the

quadrupolar frequency is given by

ωQ =
e2qQ

2h

√
1 +

η2

3
(2.12)

Pratt et al.[40] showed that in this case the angular factor should be replaced by a

factor:

λ(θ, φ) =
√

r2
xa

2
x + r2

ya
2
y + r2

za
2
z (2.13)
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a = (η + 3, η − 3, 2η) (2.14)

and the symmetry axis of the coil with respect to the principal axis of the EFG is:

r = (sin θ cos φ, sin θ sin φ, cos θ) (2.15)

θ and φ are the polar angles relating the coil axis to the quadrupolar frame. Hence,

λ(θ, φ) =
√

(9 + η2 + 6η cos(2φ)) sin2 θ + 4η2 cos2 θ (2.16)

The signal in this case is:

I(tp, t, θ, φ, η) ∝ λ(θ, φ) sin(
λ(θ, φ)

2
√

3 + η2
ω1tp) sin(ωQt) (2.17)

Integrating over the frequencies for isotropic powder gives:

I(tp, t, η) ∝
∫ 2π

0

dφ

∫ π

0

sin θdθλ(θ, φ) sin(
λ(θ, φ)

2
√

3 + η2
ω1tp) sin(ωQt) (2.18)

The fourier transform on tp gives a powder pattern line shape that is described by:

I(wp, t, η) ∝
∫ 2π

0

dφ

∫ π

0

sin θdθλ(θ, φ)

∫ ∞

−∞
eiωptpdtp sin(

λ(θ, φ)

2
√

3 + η2
ω1tp) sin(ωQt)

(2.19)

Fig. 2.6 shows the powder patterns for different values of η.

The fourier transform over tp gives a delta function with the frequency:

ωp(θ, φ) =
λ(θ, φ)

2
√

3 + η2
ω1 (2.20)

Differentiating (2.20) with respect to θ and φ gives 3 singularities:

θ = 0 ωI =
2η

2
√

3 + η2
ω1 (2.21)

θ = π/2 φ = 0 ωII =
η + 3

2
√

3 + η2
ω1 (2.22)
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Figure 2.6: Calculated on-resonance nutation spectra for randomly oriented powder
samples. The numbers are the η value. Taken form Ref. [2]

θ = π/2 φ = π/2 ωIII =
η − 3

2
√

3 + η2
ω1 (2.23)

These singularities can be seen in Fig. 2.6 next to the η = 0.7 line. At η = 0,

ωII = ωIII and ωI = 0, therefore there is one sharp frequency. As η grows there

is a separation to the 3 singularities. From these singularities η can be extracted:

η = ωIII−ωII

ωIII+ωII

For a spin echo sequence, after a time τ from the first pulse there is a refocusing

pulse with duration tr. The nutation line shape now becomes:

I(wp, t, η) ∝
∫ 2π

0

dφ

∫ π

0

sin θdθλ(θ, φ)

∫ ∞

−∞
eiωptpdtp sin(

λ(θ, φ)

2
√

3 + η2
ω1tp) sin2(

λ(θ, φ)√
3 + η2

ω1tr) sin(ωQt)

(2.24)

In an NQR experiment, since the spin rotation frequency depends on the orienta-

tion of the lattice with respect to the coil, the second pulse can not perfectly refocus

all the magnetization. The additional factor sin2( λ(θ,φ)√
3+η2

ω1tr) does not change the

nutation frequencies ωI,II,III from the FID case, however it does change the relative
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intensities of these frequencies with respect to each other. The general shapes are

shown in Fig. 2.6.

The main advantage of this method is that it is relatively simple to execute, it

can be carried out on a simple NQR spectrometer without a static magnetic field or

additional modifications. This method can be preformed on powders. It allows the

determination of η at every point of the NQR spectrum (unlike NMR, where η can

be determined only from the entire spectrum with no local resolution).

2.5 Angle dependent NQR (ADNQR)

The angle dependent NQR technique on an oriented powder, was recently developed

by Levi and Keren [41]. In this technique the signal intensity for a given frequency

is measured as a function of θ, the angle between the direction of the rf field and the

component Vzz of the EFG. In the experiment the sample is rotated with respect to

the symmetry axis of the coil (see Fig.2.7).

Figure 2.7: Basic Angle dependent NQR configuration. A sample with a preferred
direction is inserted into the coil. The angle θ between them can be
varied with a motor.
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The NQR Hamiltonian is (see section 2.2.1):

HQ =
~νq

6
[3I2

z − I2 + η(I2
x − I2

y )] (2.25)

The rf pulse Hamiltonian is (see section 2.2):

Hrf = γ~B1 · I sin ωt (2.26)

In general, the rf field can be described as:

B1 = 2H1 [sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)] (2.27)

For η = 0, HQ and Hrf commute when θ = 0. In this case there will be no spin

transitions and no signal. For η > 0, HQ and Hrf do not commute even for θ = 0.

In this case we expect a signal even when B1 is in the ẑ direction.

Levi and Keren showed [41] that for a π/2−τ−π pulse sequence the magnetization

in the coil at the time of the echo is given by:

M(η, θ, φ) =
λ(θ, φ)ω

4
√

3KT
sin3 (

λ(θ, φ)ω1tπ/2

2
√

3
) (2.28)

where: ω1 = γB1; tπ/2 is the duration of the π/2 pulse; λ(θ, φ) is the same as in

Eq. (2.16); and θ and φ are the angles between the EFG axis and B1.

In the case of an oriented powder (if we assume Vzz is in the ĉ direction), the â

and b̂ directions are mixed and M is obtained by averaging over φ, namely:

M(η, θ) =
1

2π

∫ 2π

0

M(η, θ, φ)dφ (2.29)

Theoretical echo intensity curves as a function of θ for various values of η are

presented in Fig. 2.8. A fit of experimental data to these theoretical curves can give

the value of η (and consequently of νq from Eq. (2.9)).
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Figure 2.8: Theoretical echo intensity curves according to Eq.(2.29), for various
values of η in an oriented powder, as a function of the polar angle θ
between the RF field and the ẑ direction of the EFG.

The advantages of this technique are: as in the nutation experiment, it allows the

determination of η at every point of the NQR spectrum, and it allows the determina-

tion of η without the application of a magnetic field. This technique can be applied

to all orientable powders. Its main weakness is that it is very insensitive to ηs smaller

than 0.2.

2.5.1 The orientation of the EFG tensor

As mentioned before, For YBCO7 it is known that the ĉ axis of the lattice is per-

pendicular to the Vzz direction. For lower doping levels however, it in not necessarily

the case. The calculations for the ADNQR method shown above are assuming that

Vzz\\ĉ. There is a possibility however, that for lower doping Vzz is not exactly parallel

to ĉ, and it has a component parallel to the ab plane (see Fig. 2.9).

For simplicity we choose the case of η = 0. In This case the NQR Hamiltonian is
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just:

HQ(η = 0) =
~νq

6
[3I2

z − I2]. (2.30)

The rf pulse Hamiltonian is:

Hrf = γ~B1 · I sin ωt, (2.31)

where the rf field in an arbitrary direction is

B(t) = 2B1 [sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)] (2.32)

θ and φ are the angels between the rf transmission and the EFG directions. In the

experiment we rotate the ĉ direction of the sample with respect to the rf transmission.

If ĉ and Vzz are not co-linear, then there can never be a case where θ = 0. HQ and

Hrf do not commute, and therefore we will get a signal when transmitting along ẑ

even if η=0.

Hence, if the orientation of the EFG tensor differs from the one of YBCO7 but

η remains zero, we still expect the signal intensity ratio of the θ = 0 and θ = π
2

cases to be smaller than the theoretical prediction we gave in Fig. 2.8. In other words

ADNQR is sensitive to either braking of the xy symmetry, or rotation of the principal

axis from the ĉ direction.

2.6 The experimental setup

The resonance experiments were done on YBCOy oriented powders, with different

doping levels. The measurements were preformed at a temperature of 100K, which is

above TC for all samples. The data was collected using a spin echo sequence.

In the NMR experiment we measured the echo intercity as a function of H0 with

the rf frequency constant at 88MHz. In the echo sequence tπ/2 was 4µsec and τ was
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Figure 2.9: An illustration of a possible orientation on the EFG tensor with respect
to the YBCO lattice.



CHAPTER 2. THE EXPERIMENTAL METHODS 26

Figure 2.10: The nutation spectroscopy prob. The coil goes through a current
monitor that allows measurements in different frequencies with the
same current.

30µsec. The actual spectral points were obtained by signal averaging over 20480

scans.

In the NQR experiments, both for the nutation technique and for the ADNQR

technique, there is great importance for the homogeneity of the rf field. For the

nutation experiment we measured samples with small volume inside a long cylindric

coil. For the ADNQR we used a spherical coil that gives a more homogenous field

with a better filling factor.

The probe for the nutation spectroscopy experiment is shown if Fig. 2.10. The

coil’s wire goes through a current monitor. This current monitor, with a connection

to an oscilloscope, allows us to perform all measurements with the same current in

the coil, and therefore the same H1. The sequence used in this experiment is shown

in Fig. 2.11, with tp changing from 0.3µsec to 150µsec. The refocusing pulse tr was

4.4µsec and τ was 32µsec.

The ADNQR probe is shown in Fig. 2.12. As mentioned before, we used a spher-

ical coil in order to get a more homogenous magnetic field. The coil is fixed to the
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tp tr

acquisition

Figure 2.11: Pulse sequence for the nutation spectroscopy NQR.

Figure 2.12: The ADNQR probe.

probe to minimize ringing. The experiment is fully automated, the sample holder is

connected to a motor which rotates the sample and can be controlled from the com-

puter. A computer program rotates the sample to the requested angle and then takes

a measurement. The data was obtained by applying a spin echo sequence with tπ/2

of 2.3µsec and τ of 34µsec. The actual data points were obtained by signal averaging

of 200,000 scans with a delay time of 3msec between scans. The measurements were

performed in a coil tunable from 25 to 33MHz.
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Site assignment

Previous works with NQR on YBCO analyze the different resonance frequencies and

associate them to different environments [29]-[32]. However, these experiments were

preformed on YBCO with both isotopes (63Cu and 65Cu), and hence changes in the

complicated spectrum (which will be reviewed next) due to doping, are harder to

detect.

We measured [3] the NQR frequency sweep lines of YBCOy samples with different

doping at 100K. The samples were all oriented, to enhance the signal intensity, and

enriched with the Cu63 isotope as explained in section 2.1.1. The lines were obtained

using a spectrometer with a home-made automated frequency sweep. The frequency

sweep lines are presented in Fig. 3.1. The spectrum is normalized by f 2 in order to

correct for population difference and the induced signal in the coil.

For each sample, the resonance frequencies were extracted from the frequency line,

and plotted as a function of the superconducting transition temperatures Tc. This

plot is presented in Fig. 3.3. From this plot it is clear that for our samples there are

three different resonance peaks, each peak is shifted with doping. The different peaks

28
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Figure 3.1: NQR frequency sweep on YBCO [3]. The dotted line is the experimental
result. The solid line is a Gaussian fit performed in order to determine
the resonance frequencies.

have different νq and therefore indicate to a different Cu cite.

We assigned the different resonance frequencies of each sample, based on the

previous NQR and NMR measurements on YBCO [29]-[31]. We concluded that for

high doping level (y > 6.5) all signals are from Cu(2) in the plane. There are three

different types of environment that affect the Cu(2) resonance frequency. These three

types of frequencies can be seen most clearly in the sample with y = 6.68. These

frequencies were classified in terms of the number of oxygen surrounding the chain

copper Cu(1) neighboring the detected Cu(2). When the chain is full (Cu(1)4), as in

YBCO7, the frequency is highest. The lower frequency belongs to the Cu(2) whose

neighboring Cu(1) is missing one oxygen (Cu(1)3), and the lowest frequency is when

the neighboring chain is empty (Cu(1)2). The three possible environments of the
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Figure 3.2: Schematic illustration of the Cu site with locally different oxygen
coordinations.

Cu(1) are shown schematically in Fig. 3.2.

Fig. 3.3 show that for each Cu(2) environment, the shift in the resonance frequency

is linear with Tc. If η does not change for each Cu(2) environment as a function of

doping, then our results show a linear relation between Tc and νq. νq is proportional

to the free charges around the nucleus. In that case can conclude that for YBCO

the changes in TC are proportional to the changes in the superfluid density. However

from this standard NQR experiment, we could not determine νq and η.
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Figure 3.3: Tc for different YBCO samples as a function of the NQR frequencies.
The solid lines are fits of the data to three lines with shared slope
(dTc/df = 37± 4[K/MHz]).
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Results

4.1 NMR results

The Cu NMR spectra of 4 samples of YBCOy with different doping levels is shown

in Fig. 4.1. All samples shown here are enriched with 63Cu, and are in the form

of oriented powder. The measurements were done with the external magnetic field

perpendicular to the c axis.

This spectrum shows the central transition (−1/2 ↔ 1/2) with two peaks for the

Cu(2) and Cu(1). According to previous NMR work [31][36] we can determine that

the higher frequency belongs to the Cu(2) and the lower to Cu(1).

The spectrum also shows the low field quadrupolar satellite (−3/2 ↔ 1/2 transi-

tion). For y = 7 this satellite is relatively sharp and belongs to Cu(2). It is consistent

with the line shape of η = 0. As the doping is lowered the spectrum becomes more

complicated. At lower doping there is more then one Cu(2), as well as Cu(1) environ-

ments. Fig. 4.1 shows that as the doping decreases the satellite becomes a lot wider

and weaker. For y = 6.68 the satellite is almost impossible to detect. Therefore NMR

32
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Figure 4.1: 63Cu NMR spectra at 100K and 88MHz of different YBCOy samples.
The satellites intensity is multiplied by a factor of 5.

can not be used in order to extract the asymmetry parameter for YBCO with y 6= 7.

However the disappearance of the satellites as the doping is lowered can indicate that

either η is larger at lower doping or there is a distribution of the EFG between the

different environments.
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4.2 Nutation Spectroscopy results

The nutation spectroscopy technique was applied for three YBCOy samples, the re-

sults are shown on the right panels of Fig. 4.2. For each sample the measurement was

done in the frequencies marked with arrows on the NQR line shapes shown in the left

panels. The nutation spectra is a result of measuring the echo intensity as a function

of the first pulse length tp and then Fourier transform.

For the Cu(2) of YBCO7 it is known that the principal component of the EFG

is in the c direction of the lattice and that η = 0. From Eq. (2.20) to (2.23) we

know that for the case of η = 0 there is only one nutation frequency and the ratio

ωp/ω1 is equal to 0.866. Hence, from the nutation frequency of the Cu(2) resonance

line of YBCO7 we can extract ω1. Since we worked with a constant rf field H1, we

normalized the frequency axis for all samples by ω1.

Fig. 4.2(d) shows the nutation spectrum for YBCO7, measured in both the Cu(2)

(31.5MHz) and the Cu(1) (22MHz) resonance frequencies. After normalizing the

frequency axis by ω1, we get for the Cu(2) one nutation frequency with ωp/ω1 = 0.866,

and for the Cu(1) a much broader spectrum with ωpIII/ω1 = 0.52 and ωpII is difficult

to determine. These results are consistent with η = 0 for Cu(2) and η = 0.95± 0.05

for Cu(1) (see theoretical nutation spectra in Fig. 2.6). This result is in agrement

with NMR results on YBCO7 [31][36] that measured η ' 0 for Cu(2) and η ' 1 for

Cu(1). Similar nutation experiments on YBCO7 at room temperature were done by

Vega [2]. His results were η = 0 for the Cu(2) and η = 0.8 for the Cu(1).

Fig. 4.2(e) and (f) show the nutation spectroscopy results for YBCOy with lower

doping levels. For these samples we measured only at the resonance frequencies of

the Cu(2). The sample with y = 6.73 has two resonance lines for two Cu(2) ionic
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environments, and the sample with y = 6.68 has three Cu(2) environments (see chap-

ter 3). The nutation experiment shows that for these samples, for all three different

types of Cu(2) ionic environments, η ' 0. In the case of η = 0 the singularities ωII

and ωIII (Eq.(2.22),(2.23)) unit, there is only one singularity and the line shape is

independent of the EFG orientation with respect to the rt pulse.

4.3 ADNQR results

The ADNQR technique was applied to two samples of YBCOy with y = 7 and

y = 6.68. These samples’ frequency lines are presented in Fig. 4.3(a),(b). The arrows

in this figure mark the frequencies where ADNQR was applied.

The y = 7 sample used here was not enriched; hence there are two main resonance

peaks at f = 31.55MHz for the Cu63 isotope and f = 29.3MHz for the Cu65 isotope.

At this doping, the peaks from the different isotopes are well separated. The ADNQR

was applied on the Cu63 peak and its two shoulders.

For the enriched y = 6.68 sample, the technique was applied to all three peaks.

Each peak probes a different ionic environment, as explained in the previous chapter.

We chose this sample because it contains all three environments. In addition, samples

with a low doping level may contain a signal from Cu(1). This signal in YBCO6 is

at a frequency of ∼ 30MHz. It is clear from Fig. 4.3(b) that there is no peak at this

frequency for the y = 6.68 sample, and therefore the Cu(2) peaks of this sample are

not contaminated by the Cu(1) signal.

The ADNQR results in Fig. 4.3(c),(d) show that the intensity at θ = 0 and 180

is lower than at θ = 90, as predicted in section 2.5. The solid lines in this figure are

a fit of the experimental data to Eq. (2.29). The fit allows a finite base line for each
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sample to account for some unknown amount of misalignment. This misalignment is

a result of the non-perfect orientation and some inhomogeneity of the induced field

in the coil.

The best fit for the main peak of y = 7 was achieved for η = 0± 0.15, indicating

that the CuO plane is charge homogeneous. Again, this result is in good agrement

with previous results obtained from NMR giving values of: η = 0 [31] and η =

0.01 ± 0.01 [36]. This result is also in agreement with our nutation spectroscopy

results from the previous section.

The most interesting result is that obtained for y = 6.68. The best fit for the peak

associated with an environment of a full chain also gives η = 0 ± 0.15, despite the

frequency shift. In contrast, for the other oxygen environments the signal as θ → 0

is clearly above the background, suggesting that the value of η is larger than zero.

The fit to Eq. (2.29) gives η ' 0.6. One has to bare in mined however, that this fit

assumes that the main EFG Vzz is in the ĉ direction. As we discuss in section 2.5.1,

an alternative explanation to the higher signal at θ = 0 is that for these environments

Vzz is not exactly parallel to the ĉ direction. In that case even if η = 0 there is still a

signal expected at θ = 0 from the component of Vzz that is parallel to the plane.



Chapter 5

Discussion and Conclusions

In this part we compare three different techniques to measure the quadrupole interac-

tion asymmetry parameter η. The techniques are employed on the in-plane Cu atom

of the YBCO compound with different doping levels.

The first technique is the conventional NMR experiment. Cu NMR was preformed

successfully in the past for YBCO7, and the parameters νq, η and the knight shifts

were extracted for both Cu(1) and Cu(2). For lower doping levels however, the

spectrum becomes very complicated, due to different ionic environments that result

from extracting oxygen from the chains.

In this work we attempted to simplify the spectrum by using enriched samples,

containing only the 63Cu isotope. We have seen however that as the doping level is

lowered the satellites becomes very broad and weak, and this technique can not be

used to extract the quadrupole interaction parameters for YBCO at lower doping.

The broadening and disappearance of the satellites suggest however, that there is a

distribution in the EFG parameters for the Cu(2).

Next we used two methods that use pure NQR experiment with no permanent
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magnetic field. The main advantage of these techniques is that they can be employed

at every point of the NQR spectrum. Therefore, unlike NMR, η can be determined

for each different ionic environment separately.

The nutation spectroscopy experiment showed that for YBCO7 η = 0 for Cu(2)

and η ' 1 for Cu(1), in agreement with previous NMR results. This experiment also

showed that for lower doping levels, η remains zero, not only for the Cu(2) neighboring

a full chain as in YBCO7, but also for Cu(2) neighboring an empty or a half filled

chain. This technique however is not sensitive to the EFG orientation.

Finally the ADNQR technique showed that for low doping levels there is a clear

difference between the Cu(2) neighboring a full chain as in YBCO7, and the Cu(2)

neighboring an empty or a half filled chain. For the Cu(2) with full chain both

for y = 7 and y = 6.68, the result was η = 0. However for the two other cu(2)

environments of y = 6.68 the fit to the theoretical calculation gave η ' 0.6. This

seems to be in contradiction to our nutation spectroscopy results. The way to setal the

contradiction is to remember that the theoretical calculation of the ADNQR is based

on the assumption that Vzz parallel to the c direction of the lattice. This assumption

was confirmed for y=7 and y=6. It is possible that at other doping levels, for Cu(2)

neighboring an empty or a half filled chain, Vzz is not exactly in the c direction (see

Fig. 2.9), and as a result we get an enhancement of the signal at θ = 0, although

η = 0 (see section 2.5.1).

Our motivation for these experiments was to measure possible charge inhomo-

geneity or electronic phase separation in the YBCO compound. Both the nutation

spectroscopy and the ADNQR for the Cu(2) from a fully oxygenized environment,

even for lower doping, show a homogeneous charge distribution in the plane.

Our combined nutation and ADNQR experiment imply that the principle axis



CHAPTER 5. DISCUSSION AND CONCLUSIONS 41

z of the EFG tensor is not along c, therefore the symmetry in the CuO2 planes of

YBCO6.68 neighboring a chain with missing oxygen, is lower than the one of YBCO7.

This means that any phase separation in the plane is correlated directly with the O

dopant atoms, and therefore cannot be an intrinsic property of CuO planes.

McElroy et.al. [42] came to a similar conclusion by preforming spectroscopic imag-

ing scanning tunneling microscopy on Bi-2212 samples. They found strong correlation

between the position of localized resonance at -960meV identified with interstitial

oxygen dopants and the size of local spectral gap.

To understand these result Nunner et.al. [43] presented a theoretical model where

the dopants modulate the pair interaction locally on an atomic scale. They calculated

the correlation between the local density of states and the dopant modulated pair in-

teraction potential. They showed that this model agrees with McElroy’s experimental

results on Bi-2212. A more resent theoretical work by Mori et.al. [44] identified two

mechanisms by which the position of the apical oxygens can modulate the pairing

interaction within the CuO2 planes.

Our result for the YBCO compound reinforces the surface experiments done on

Bi-2212. It shows that the correlation between the electronic spatial variation in the

plane and the dopant, exists not only in Bi-2212 and it is a property of the bulk and

not only of the surface.



Chapter 6

Universal doping dependence of

the ground state staggered

magnetization in cuprates

In the second part of this thesis further underdope a cuprate until it becomes mag-

netic. We concentrate on differen families (x) of the HTSC compound (CaxLa1−x)(Ba1.75−xLa0.25+x)Cu3Oy

(CLBLCO). We determine the lattice parameters variations for all x and doping, and

get an estimate for the t-J model energy scales from structural considerations. In

addition, we measure the doping dependence of the ground state staggered magnetiza-

tion for each CLBLCO family. These measurements provide alternative information

on the t/J ratio.

All cuprate compounds have a layered structure with one or more copper-oxygen

planes. The most simplified way to describe these planes is by the one band Hubbared
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Figure 6.1: An illustration of The Cu-O plane in cuprates. On the left: The parent
compound. The blue are the copper atoms and the red are the oxygen
atoms. On the right: A simplified one band model of the electronic
structure, with electrons hopping with hopping rate t. There is an AFM
exchange J between spins on neighboring sites.

model with holes hopping on a square lattice [45][46].

H = −
∑

<i,j>σ

tiσc
†
iσcjσ + U

∑
i

ni↑ni↓ (6.1)

c†iσ is the creation operator of an electron with spin σ, tij is the hopping matrix

element between sites i and j, and U is the repulsive energy cost due to screened

Coulomb interaction to put two electrons with opposite spins on the same site. For

the cuprates parent compounds there is one electron per site (half filling), and have

a large U >> t. In this case the electrons prefer to be localized on the lattice site

because hopping to reduce kinetic energy t will cost in U . This phase, called a Mott

insulator, is described schematically in Fig. 6.1. This insulator is antiferromagnetic

(AFM), since AFM alignment permits virtual hopping to gain an energy J = 4t2/U ,

will for ferromagnetic alignment hopping is forbidden by the Pauli exclusion. In the

doping process, holes are introduced into the copper-oxygen plans and the AFM order

is rapidly destroyed by a few percent of holes.
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Figure 6.2: A Theoretical calculation of the doping dependence of the ground state
staggard magnetization for different t/J , as calculated by Yamamoto et
al. in Ref. [4].

It is widely agreed that cuprates should be addressed as a doped Mott insulator,

where holes are moving on a 2D AFM background [47][48]. Since in this case t << U ,

it can be expand in t/U . The leading order is described by the t-J model Hamiltonian:

H = −
∑
i,j

tijc
†
iσcjσ + H.c. +

∑
i,j

JSi · Sj (6.2)

where t and t′ are the near and next-near neighbor hoppings, respectively, and J is

the Heisenberg superexchange between local spins Si = c†iασαβciβ.

In this model, shown schematically in Fig. 6.1, if we look at a single hole hopping

in an AFM background, one hop will cause the spin to be surrounded by ferromagnetic

bonds. There is a competition between the energy cost in J and the gain of kinetic

energy t. In the limit of low doping this competition causes the effective hopping rate

to be renormalized from t to J [49][50][51][52].

Above some critical doping the zero temperature staggered AFM order parameter
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M0 is destroyed, and the cuprates enter a glassy, phase separated, state. Since the

glassy state precedes superconductivity, understanding this transition is crucial to

understanding the cuprates. Particularly interesting is the doping dependence of M0

and its variations with the different energy scales. These variations were calculated

theoretically [53][54][55][4] but not measured in a controlled manner. An example

for one of these calculations, done by Yamamoto et al., is shown in Fig. 6.2. Such

measurements could shed light on the effective Hamiltonian governing the holes at

T → 0 in the underdoped region. While J can be measured relatively simply with

neutron or Raman scattering on a single crystal, it is very difficult to determine t

experimentally.

In this work we determine t/J from lattice parameters, including the buckling

angle, using neutron powder diffraction. We determine the doping dependence of M0

using zero field muon spin rotation (µSR).



Chapter 7

The experimental methods

7.1 The CLBLCO System

(CaxLa1−x)(Ba1.75−xLa0.25+x)Cu3Oy is a HTSC, which also belongs to the 1:2:3 sys-

tems. In comparison to YBCO, Ca occupies the Y site, and La occupies both the Y

and the Ba sites (see Fig. 7.1).

The family index x varies in the range 0.1 ≤ x ≤ 0.4. All compounds are tetrago-

nal and there is no chain ordering as in YBCO [56]. The oxygen atoms in the Cu(1)

layer are distributed randomly with respect to the a and b directions. The CLBLCO

compound is stable throughout all parabolic TC curves, so one can synthesize samples

ranging from the underdoped to the overdoped, by changing the O doping. As we

show below, there are minimal structural differences between the families. In addi-

tion, the level of disorder as detected by Ca NMR [57] and Cu NQR [58] is identical

for the different families.

The phase diagram is presented in Fig. 7.2 showing the antiferromagnetic Néel

temperature TN , the spin glass temperature Tg where islands of spins freeze, and the
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Figure 7.1: The (CaxLa1−x)(Ba1.75−xLa0.25+x)Cu3Oy (CLBLCO) unit cell.

superconducting critical temperature Tc. In this phase diagram TN [59] and Tg [60]

were measured by µSR, and Tc was measured by resistivity [56]. The spin glass phase

penetrates into the superconducting phase. It also slightly penetrates into the Néel

phase in the sense that a first transition, to long range order, takes place near 200 K,

and a second transition, with additional spontaneous fields, takes place near 10 K.

7.1.1 Sample preparation

The CLBLCO samples are also prepared by solid state reaction, as described in

chapter 2.1.1 for YBCO. The oxygen reduction at high doping levels is done in the

same way as in the YBCO samples, in a tube furnace in flowing oxygen. Under

a certain doping level (about y=6.7), the reduction is made with flowing nitrogen

instead of oxygen (so that more oxygen can come out of the sample at a certain

furnace temperature), and quenched to room temperature.
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Figure 7.2: The CLBLCO phase diagram including magnetic (close symbols) and
superconducting (open symbols) critical temperatures.

7.2 Neutron powder Diffraction

Neutron scattering is a very useful technique in the study of materials. The thermal

neutron has a magnetic moment, no electrical charge, it’s wavelength is comparable to

that of interatomic distances, and it’s energy is of the order of the thermal excitations

of crystals. These properties make it suitable for the study of both structural and

dynamical aspects of matter.

In scattering experiments, the conservation rules, momentum and energy, are:

Q = kF − kI hν = EF − EI (7.1)

I and F subscripts stand for the initial and final state of the neutron. The wave

vector is k = 2π
λ

and the energy is the classical kinetic energy, E = 1
2
mv2. Assuming

an elastic scattering, (hυ = 0) we have |kF | = |kI | = 2π
λ

and the scattering vector

Q = 4π
λ

sinθ, θ being half the scattering angle.
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In a neutron powder diffraction experiment the Bragg reflections are used to get

information on the crystal structure. The dynamical and magnetic aspects of the

neutron-matter interaction are ignored. The experiment measures the scattered wave

intensity as a function of the scattering angle (or Q).

7.2.1 Rietvelt refinement

The Rietvelt refinement [61] is a method to fit the powder diffraction experimental

pattern and the calculated one. In this method the least-square refinement is carried

out until the best fit is archived. The calculated pattern takes into account all of

the parameters of the instrument and the sample, such as lattice parameters, atomic

positions, and Debye-Waller factors (for thermal motion of the atoms).

In this method the calculated powder diffraction pattern is made out of a collection

of individual reflection profiles, each with is own peak position, height, width, and

area that is proportional to the Bragg intensity. Each atom’s Bragg intensity Ik (k

stands for the Miller indices (hkl)) is proportional to the square of the absolute value

of the structure factor |Fk|2.
The diffraction profile is calculated and compared with the observed pattern point

by point. The parameters of the model are then adjusted using the least-squared

method until a minimum is achieved. The quantity minimized in this method is:

Sy =
∑ 1

I i
obs

(I i
obs − I i

calc)
2, (7.2)

where I i
obs is the observed intensity at the ith step, I i

calc is the calculated intensity at

the ith step, and the sum is over all data points.

In this work the refinement was done using the GSAS program [62] with the

EXPGUI interface [63].
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7.3 Muon Spin Rotation (µSR)

µSR is a technique that allows the study of magnetic properties of materials in a

microscopic level. In this technique a beam of muons is injected into the matter.

Each muon’s spin then rotates around the local magnetic field, and then decays to

a positron in the direction of the muon spin. The decayed positron direction in

time indicates the muon’s spin time evolution. The µSR experiments in this work

were performed at the Paul Scherrer Institute (PSI) in Switzerland. The samples

were measured in a 4He cryostat. The samples were all sintered pellets. All the

measurements were performed in zero field.

7.3.1 Muon production, implantation and decay

Experiments in condensed matter require high intensities and flux, this is achieved

by using high energy proton beams, produced in cyclotrons. The protons collide with

nuclei in an intermediate target and produce pions via:

p + p → π+ + p + n, (7.3)

the pions then decay into muons:

π+ → µ+ + νµ, (7.4)

where νµ is the muon-neutrino.

The muon beam is generated from pions decaying at rest in the target surface.

These muons, known as surface muons, have zero momentum. Therefore, in order to

conserve momentum, the muon and the neutrino have opposite spins. The neutrino

always has negative helicity (its spin is antiparallel to its momentum), and thus the

muon spin has to be similarly aligned. In this way a muon beam that is 100% spin
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polarized can be produced. The muons hit the target with energy of 4MeV, and

lose their energy very quickly (in 0.1-1nsec) by various scattering processes, all of

Coulombic origin, so there is no influence on the muon’s spin. After stopped, the

muons precess according to the local magnetic field and decay after a time t with

probability et/τ . τ = 2.2µsec is the lifetime of the muon. The muon decays in a three

body process:

µ+ → e+ + νe + ν̄µ, (7.5)

The decay is via the weak interaction and violates parity. This leads to the positron

being emitted preferentially along the direction of the muon’s spin at the time of the

decay. The polarization of an ensemble of muons can be followed, by detecting the

emitted positrons.

7.3.2 Experimental setup

Muon experiments can de performed in two different ways, depending on the time

structure of the muon beam. In a Continuous Wave (CW) facility the muons arrive at

the sample without any distinct time structure. When the muon enters the experiment

it is detected and starts a clock. When the positron is detected in one of the detectors,

the clock is stopped. The advantage of this type of muon beam is that the time

resolution is quite good, and fast relaxing signals can be detected. On the other

hand, if a second muon arrives before the first one has decayed then there is no way

of knowing whether the emitted positron came from the first or second muon, so this

event must be disregarded. This limits the maximal time for which the polarization of

the muons can be traced to about 10µsec. In pulsed beam facilities, a large number

of muons arrive in a very intense pulse and there is no need to detect when each
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muon arrives. The detection of the positrons is then made and each event is timed

with respect to the arrival of the pulse. In this method the entire incoming muon

intensity can be used and there is almost no background in the µSR signal. This

allows detection of longer muon decay events. The drawback of this method is that

the width of the muon pulse limits the time resolution. In this work we measured

fast relaxing signals, hence the time resolution at the beginning of the signal was very

important. Therefore we chose to preform our measurements in a CW facility at the

Paul Scherrer Institute in Switzerland.

Once implanted in the sample, the muon spin precesses in the presence of the local

magnetic field B with angular frequency ωµ = γµB, where γµ is the gyromagnetic

ratio for the muon. This is known as Larmor precession. Unlike other resonance

techniques, like NMR or ESR, no electromagnetic field is necessary, since the muon

beam is initially polarized, and the precessing muon can be followed directly from the

emitted positron.

A schematic diagram of the experiment is shown in Fig 7.3. A muon, with its

polarization aligned antiparallel to its momentum, is implanted in a sample. If it

decays immediately, then it will not have time to precess and a positron will be

emitted preferentially into the backward detector. If it lives a little longer it will have

time to precess so that if it lives for half a revolution the resultant positron will be

preferentially emitted into the forward detector.

Fig. 7.4 shows the time evolution of the number of positrons detected in the

forward and backward detectors. Because the muon decay is a radioactive process

these two terms sum to an exponential decay, with a decay constant that is the lifetime

of the muon. The time evolution of the muon polarization can be extracted from the

normalized difference between the number of positrons detected at the forward and
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Figure 7.3: A schematic diagram of the MuSR experiment. A muon, with its
polarization aligned antiparallel to its momentum, is implanted in the
sample. It then rotates about the local magnetic field B with the
Larmor frequency, and decays to a positron preferentially along the
direction of the muon’s spin at the time of the decay.

backward detectors,

A(t) =
NB(t)− αNF (t)

NB(t) + αNF (t)
. (7.6)

α ia a parameter that corrects for geometrical differences between the detectors. A(t)

is called the asymmetry plot. The maximum value of the asymmetry plot depends

on the initial beam polarization, the intrinsic asymmetry of the weak decay, and the

exact structure of the detectors system.

µSR can be performed with no applied external field (ZF), as was done in this

work, or with either transverse (TF) or longitudinal (LF) fields applied with respect

to the initial muon spin direction. In the ZF case the muons will precess according to

the internal field in the sample under study and reveal the internal field distribution.

This method is very sensitive to detecting weak internal magnetism. In the TF case

the muon will precess about the applied field, with frequency proportional to the size



CHAPTER 7. THE EXPERIMENTAL METHODS 54

 

Figure 7.4: On the Left: The number of positrons detected in the forward and
backward detectors. On the right: The muon Asymmetry function.

of the field at the muon site in the material. Any dephasing in the observed oscillation

indicates either an inhomogeneous internal field distribution or spin-spin (T2) relax-

ation. In LF there is no spin precession, but spin relaxation, due to inhomogeneous

field distributions or spin-lattice (T1) relaxation processes.

7.3.3 Muons in matter in Zero Field

Muons in magnetically ordered materials precess in the internal magnetic field and

result in signals proportional to that magnetic field. The very large magnetic moment

of the muon makes it very sensitive to extremely small magnetic fields ( 0.1G), and

so it is useful in the study of materials where the magnetic order is random or very

short range.

Fig.7.5 shows the muon-spin precession in a magnetic field. If the local magnetic

field at a muon site is at an angle θ to the initial muon spin direction when the muon

is implanted, the muon spin will precess around a cone of angle θ about the magnetic
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Figure 7.5: The muon spin precession about the magnetic field at an angle θ.

field. The polarization in the z direction (and the positron asymmetry) will be:

G(t) = cos2(θ) + sin2(θ) cos(γµBt). (7.7)

If the direction of the local magnetic field is random then averaging over all directions

gives:

G(t) =
1

3
+

2

3
cos(γµBt). (7.8)

If the strength of the local magnetic field has a Gaussian distribution with width

∆/γµ centered on zero, then averaging over this field distribution gives:

G(t) =
1

3
+

2

3
e−∆2t2/2(1−∆2t2). (7.9)

This polarization is known as the Kubo-Toyabe polarization, shown in Fig. 7.6. This

relaxation function is observed experimentally in cases where the origin of the internal

field is frozen random nuclear magnetic moments. A different form of the internal

field distribution would change the form of the relaxation line.

Magnetic and non magnetic regions co-existing in the same specimen result in dis-

tinct signals whose amplitudes are proportional to the volume of the sample occupied

by the particular phase.
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Figure 7.6: The Kubo-Toyabe polarization, the relaxation of the muon-spin due to a
Gaussian field distribution.



Chapter 8

Summary of Our Previous µSR

Results

In a previous work [59] we measured the magnetic transition temperatures TN and

Tg for the CLBLCO compound and constructed the phase diagram shown in Fig. 7.2.

In that work, in order to interpret the phase diagram, we used a scaling relation.

The scaling was designed so that the Tc domes of all families, normalized by

Tmax
c , will collapse on to a single dome. For this purpose the mobile hole parameter

measured from optimum ∆pm was defined by ∆pm = K(x) · (y − ymax), where ymax

is the optimal oxygen doping, and K(x) is a family-dependent scaling parameter. K

should be thought of as doping efficiency parameter connecting oxygen level to mobile

holes in the CuO2 planes. The best scaling was found using K = 0.76, 0.67, 0.54, 0.47

for x = 0.1 . . . 0.4, respectively, and is shown in Fig. 8.1.

Despite the fact that K(x) was chosen to scale the Tc domes, when applying it for

the entire phase diagram the other critical temperatures scale as well. Fig. 8.1 also

shows, Tg/T
max
c and TN/Tmax

c , for all families, as a function of ∆pm. The Tg/T
max
c
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Figure 8.1: The CLBLCO phase diagram after scaling: For each family (x), the
critical temperatures are normalized by Tc at optimal doping, and y is
replaced by ∆pm (see text for details). Inset: The normalized staggered
magnetization as a function of the normalized temperature. The
symbols are the experimental results, taken by measuring the oscillation
frequency of the polarization curves. The solid lines are the theoretical
curves plotted according to Eqs. 8.2 to 8.5.

curves of all families collapse onto each other. The TN/Tmax
c curves, with the ex-

ception of the x = 0.1 family, also collapse onto each other. The reason TN of the

x = 0.1 family is not in-line with the others is due to interactions between planes, as

explained next.

The Néel temperature stems from three dimensional interaction, and it is a func-

tion of not only the in-plane J , but also interplane couplings J⊥ and other anisotropies.

To account for the anisotropies quantitatively we assumed that CLBLCO could be

considered a 2D magnet with weak anisotropies, since the chain layers are partially
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Figure 8.2: The same as Fig.8.1 but the Néel temperature is corrected for anisotropy
contribution so it is the same as J for the parent compound (see text).

full with oxygen even for the parent compounds. Therefore we used the Hamiltonian

H = J(
∑

i,δ‖

Si · Si+δ‖ + αxy

∑

i,δ‖

Sz
i S

z
i+δ‖ + α⊥

∑

i,δ⊥

Si · Si+δ⊥) (8.1)

where δ‖ and δ⊥ are the in and out of plane neighbor spacings, respectively.

In the Heisenberg model for the parent compounds, TN = JtN(αeff ) where the ef-

fective anisotropy αeff is mainly set by α⊥, and tN(αeff ) is a known logarithmic func-

tion of the anisotropy [64][65]. We determined αeff and extracted J from TN . This

was done by measuring the temperature dependence of the muon rotation frequency

ω(T ), which is proportional to the order parameter M(T ). The plot of M/M0 as a

function of T/TN depends only on αeff . The theoretical behavior of M(T/TN)/M0

was calculated using the self-consistent Schwinger-boson mean-field (SBMF) theory

[64],[65]. The calculation was done by solving simultaneously for every αeff and t
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two equations: a self consistency equation

h = 2αeff [1− 2K(∆, h, t)] , (8.2)

and a constraint equation ensuring one Schwinger-boson per site

K(∆, h, t) + K(∆, 0, t) = 1. (8.3)

In these equations

K(∆, h, t) = 2.32

∫ 1

0

(1 + ∆ + h)

ω(∆, h, γ)
[n(ω(∆, h, γ), t) + 1/2] ρ(γ)dγ, (8.4)

the density of states is given by

ρ(γ) =
2

π2

1∫

0

[
(1− t2)(1− t2 + γ2t2)

]−1/2
dt, (8.5)

or its approximation [66], ω(∆, h, γ) = 2.32((1 + ∆ + h)2 − γ2)1/2, and n(ω, t) =

[exp(ω/t)− 1]−1. Finally, M/M0(αeff , t) = h(αeff , t)/h(αeff , 0).

The inset of Fig. 8.1 shows ω(T/TN)/ω(T → 0) for two samples marked in Fig. 8.1,

and a fit to the predicted behavior described above. When comparing theory and

experiment we focused on the low temperature data, up to 200 K, where the theory

is most accurate. The x = 0.1 sample clearly has a bigger αeff than the x = 0.3

sample, and is more 3D like. Using this method we determined αeff for all samples

with Néel order and defined the quantity

T cor
N ≡ TN/tN(αeff ) (8.6)

for these samples [59]. For zero doping T cor
N = J . When the system is doped, TN is

also affected by hopping and T cor
N = J is no longer valid. Fig. 8.2 shows the scaled

phase diagram, where TN is replaced by T cor
N . After this replacement the entire phase

diagram scales to a single unified curve, indicating that Tmax
c ∝ J and that a single

energy scale controls magnetism and superconductivity.



Chapter 9

Results

9.1 Neutron Diffraction results

The neutron powder diffraction experiments were performed by Omar Chmaissem at

the Special Environment Powder Diffractometer at Argonne’s Intense Pulsed Neutron

Source.

The experiments were preformed on samples from 4 different families of CLBLCO.

An example of a raw data and refinements for one of these samples is shown in Fig. 9.1.

For each sample we used the refinement to extracted the lattice parameters, bond

lengths and angels.

We looked for the parameters that are family-dependent and can potentially ex-

plain the different energy scales between the families. Fig. 9.2 shows a summary of the

parameters extracted form the neutron diffraction experiment. The empty symbols

represent data taken from Ref. [5]. These parameters are shown in the sketch of the

CLBLCO unit cell in Fig. 7.1. All the parameters are family-dependent, however, not

to the same extent. The lattice parameters a and c, depicted in Fig. 9.2(a) and (b),
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Figure 9.1: Neutron powder diffraction data and refinement for a sample with x=0.1
and y=7.06.

change by up to about 0.5% between the two extreme families (x = 0.1 and x = 0.4).

The in-plane Cu-O-Cu buckling angle is shown in Fig. 9.2(c). This angle is non-zero

since the oxygen is slightly out of the Cu plane and closer to the Y site of the YBCO

structure. The buckling angle shows strong variation between the families; there is

about a 30% change from the x = 0.1 family to x = 0.4. This change is expected since

as x increases, a positive charge is moving from the Y to the Ba site of the YBCO

structure, pulling the oxygen toward the plane and flattening the Cu-O-Cu bond.

We believe that this buckling angle is the main cause for the different J and

therefore different Tmax
c between the CLBLCO families [59]. Nevertheless, we note

that Pavarini et al. [67] showed that in many cuprates families Tmax
c scales with
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t′/t. t′ is controlled by the hybridization of the Cu 4s with the apical oxygen 2pz,

hence Tmax
c scales with the distance R24 between the in-plane copper and the apical

oxygen. In Fig. 9.2(d) we show R24 for our CLBLCO samples. Our results also

support qualitatively Pavarini’s conclusion.

From the lattice parameters and the buckling angle it is possible to construct t and

J [68]. The hopping rate tdd between two Cu 3dx2−y2 can be described as a hopping

from the first Cu 3dx2−y2 to the O 2p, followed by a hopping from the O 2p to the

second Cu 3dx2−y2 . It can be calculated from:

tdd =
〈db|V |p〉〈p|V |da〉

Ed − Ep

(9.1)

〈p|V |da〉 = tpd (9.2)

〈db|V |p〉 = tpd cos θ (9.3)

θ is the buckling angle between the bonds.

The charge transfer energy ∆ is

∆ = Ed − Ep (9.4)

therefore,

tdd = −t2pd cos θ

∆
(9.5)

The hopping integral tpd between a Cu 3dx2−y2 and O 2p is proportional to bond

length to the power -3.5 [69]. Therefore, assuming the charge transfer energy ∆ is

family-independent, we can estimate the hopping rate tdd from:

tdd ∝ cos θ

a7
. (9.6)

The superexchange J is known to be [?]:

J =
4t2

U
. (9.7)
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Therefore, assuming that the Hubbard U is also family-independent:

J ∝ cos2 θ

a14
. (9.8)

Estimates of tdd and J , normalized to the averaged values of the x = 0.1 family

〈tdd〉0.1 and 〈J〉0.1, are presented in Fig. 9.3(a) and (b). Although there is a variation

in t and J within each family, the variation is much larger between the families. J

increases with increasing x, in qualitative agreement with our result for T cor
N discussed

in chapter 8.

In Fig. 9.3(c) we show the normalized ratio t/J for the four CLBLCO families.

There is about 5% difference between the two extreme families. But we stress that

this determination of t/J is only an estimate, used in practice to set the oxygen level

spacing between samples in the µSR experiment discussed in the next section. More

accurate calculations of t/J are in progress and preliminary data indicate that t/J

varies by more than 10% between families [70].

9.2 µSR results

In this section we determine the doping dependence of the order parameter in the four

CLBLCO families using zero field µSR. The experiments were done on the GPS beam

line at the Paul Scherrer Institute, Switzerland. The muon oscillation frequency ω is

proportional to the local magnetic field it experiences. Therefore, it can be used to

determine the staggered magnetization M .

In general the polarization curves in this material can be described by a sum of

two functions [59]. The first function is the Kubo-Toyabe function shown in Fig. 7.6

This part describes the polarization resulting from frozen random nuclear magnetic
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moments. The second function is a rapidly relaxing function that is a result of the

magnetic field due to frozen electronic moments in the magnetic areas.

In this work are interested in the order parameter at T → 0 therefore we per-

formed the measurements at low temperatures, well bellow the magnetic transition.

In these temperatures the Kubo-Toyabe function is undetectable and one can only

see the fast relaxation du to the freeze of the electronic moments. The behavior

at very low T indicates the nature of the ground state. For the antiferromagnetic

ground state the long range order is reflected by spontaneous oscillations of the muon

polarization in a addition to the fast relaxation. The spin glass ground state consists

of magnetic islands with randomly frozen electronic moments [60], and consequently,

the polarization shows only rapid relaxation.

Typical muon polarization curves at T = 5 K are presented in Fig. 9.4 for four

samples from the x = 0.4 family. The sample in inset 9.4(a) is in the spin glass

phase; it has no long-range magnetic order and hence has no oscillations. The sample

in inset 9.4(d) is in the antiferromagnetic phase, and so it has strong oscillations

at low temperatures. Finally, the samples in inset 9.4(b) and (c) are examples of

intermediate samples and thus have weaker oscillations.

The best fit of the polarization is achieved with the function

P (t) =
3∑

i=1

Ai exp(−λit) cos(ωit) (9.9)

with ω3 = 0; the fit is shown in Fig. 9.4 by the solid line. The reason for multiple

frequencies is that the muons stop at different sites in the unit cell. The order pa-

rameter extracted from the high frequency, around a few tens of MHz, is known to

agree with neutron scattering experiments [71]. The lower frequency is believed to

emerge from metastable muon sites and is not used for further analysis.
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The muon polarization was measured at low temperatures, typically from 5 K to

200 K, and the oscillation for T → 0 was extracted from extrapolation. Fig. 9.5(a)

shows a summary of the oscillation frequency ω(T → 0) as a function of the chemical

doping y for all four CLBLCO families. In this plot the AFM critical doping, where

the oscillations disappear, is different for each family. Not surprisingly, this is the

same oxygen doping where the Néel order is replaced by the spin glass phase in the

diagram. However, the chemical doping is different from the mobile hole doping pm,

and a rescaling of the doping axis is required.

Fig. 9.6(a) shows ω(T → 0) as a function of ∆pm for each family. The scalability

of the phase diagram, as explained in chapter 8, suggests that ∆pm is a parameter

proportional to the mobile hole density variation. Hence Fig. 9.6(a) is equivalent to

a plot of the AFM order parameter at zero temperature as a function of mobile hole

density.
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Figure 9.2: The parameters extracted from a neutron diffraction experiment as a
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lattice parameter a. (b) The lattice parameter c. (c) θ - the buckling
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Chapter 10

Discussion and Conclusions

In section 9.1 we showed, using structural considerations, that the ratio t/J is ex-

pected to change by v5% between the x = 0.1 and x = 0.4 CLBLCO families.

In section 9.2 we discuss the plot of the AFM order parameter at zero temperature

as a function of hole doping. This plot, and in particular the AFM critical doping, is

determined by the ratio t/J (as discussed in chapter 6). However, Fig. 9.6(a) shows

that the order parameter and the AFM critical doping is family-independent for

the CLBLCO system. To demonstrate this point we show, using the two arrows in

Fig. 9.6(a), what should have been the difference in the critical doping had it been

proportional to t/J , and changed between the x = 0.1 and x = 0.4 by 5% (of 0.3).

Thus, we conclude that M0(x, ∆pm) is x-independent, hence independent of t/J .

The above conclusion could, a priori, depend on the choice of the scaling param-

eters K’s and ymax. A different set of K’s or ymax would shift the magnetic critical

doping with respect to each other. However, it will also shift the normalized Tc domes,

Tg line, and T cor
N line with respect to each other. We have attempted to use a different

set of K’s and ymax’s, which will not noticeably destroy the scaling of the normalized

72
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critical temperatures. We could not generate a variation of more than 2% in the M0

critical doping. In other words, the different sets of K’s and ymax’s always kept the

critical doping well between the two vertical arrows in Fig. 9.6(c).

As mentioned in chapter 6, there are theoretical calculations in the limit of low

doping, which show that t is renormalized downward from its bare value to an effective

value J [49][50][51][52]. Our result could be explained by this theory, meaning that.

This possibility could solve a profound riddle in the study of the CLBLCO system.

This system was found to obey the Uemura relation Tc ∝ ns [72], where ns is the

superconducting carrier density, in both under- and overdoped regions [73]. At the

same time Tmax
c scales with J as indicated before. Therefore, the Uemura relation

should be rewritten as Tc ∝ Jns. What is then the role of t? Our finding that the

magnetic order parameter versus doping is universal suggests that at low temperature

t and J unite.

Another plausible line of interpretation may be that different values of t/J cor-

respond to different values of K, namely, the changes in t/J are canceled out by

re-scales the doping axis. We currently do not have enough information on the origin

of the scaling factor K to determine if that explanation is possible. However, we

notice that K changes by up to 60% between the CLBLCO families. We find it hard

to believe that such a significant difference in K will cancel out the difference much

smaller difference in t/J .

An alternative explanation is that the destruction of the AFM order parameter is

not a result of single holes hopping and should be described by a completely different

Hamiltonian; perhaps hopping of boson pairs [74].

To conclude, an estimate of t and J from simple structure considerations using

neutron diffraction shows that the origin of the different energy scales between the
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CLBLCO families is mainly the different buckling angles. The difference in t/J

between the two extreme families is about 5%. Although this is not an accurate way

to measure the hopping rate or superexchange coupling, it does set the scale for the

expected variation in the AFM critical doping. Using µSR, the AFM order parameter

as a function of oxygen was determined for different families of the CLBLCO system.

We used a scaling transformation to move from oxygenation level to mobile holes.

Our measurements show that, at zero temperature, the order parameter as a function

of mobile holes is independent of t/J within the required accuracy.



Appendix A

Derivation of the NQR

Hamiltonian

The interaction energy of a charge density ρ(r) with an electric potential V is:

E =

∫
ρ(r)V (r)dr. (A.1)

Expanding V (r) in a Taylor series and substituting it into (A.1) yields:

E = V (0)

∫
ρdr +

∑
α

Vα

∫
rαρdr +

1

2

∑

α,β

Vα,β

∫
rαrβρdr (A.2)

where Vα = ∂V
∂rα
|r=0 and Vαβ = ∂2V

∂rα∂rβ
|r=0.

Since the nucleus is the center of mass, the first term is the electric monopole,

the electrostatic energy of the nucleus. The second term is the interaction of the

electric dipole moment of the nucleus with the electric field. This term vanishes since

in the center of mass frame the electric dipole moment is zero. The third term is the

quadruple interaction. Vαβ is called the Electric Field Gradient (EFG) tensor.
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A.0.1 The EFG

In the quadrupole interaction the environment is taken into account by the EFG.

The EFG reflects the asymmetry in the nucleus environment. The principal axes can

always be chosen so that Vαβ = 0 for α 6= β so a diagonal EFG tensor can be written:

V =




VXX 0 0

0 VY Y 0

0 0 Vzz




the directions are defined by:|VXX | ≤ |VY Y | ≤ |VZZ |

From the Laplace equation: ∇2V = 0 ⇒ VXX + VY Y + VZZ = 0. Therefore the

number of parameters can be reduced and the EFG tensor can be written as:

V =




−1−η
2

0 0

0 −1+η
2

0

0 0 1




. (A.3)

where: eq = Vzz and η = VY Y −VXX

VZZ
is the asymmetry parameter.

A.0.2 The quadrupole tensor of the nucleus

The quadrupole tensor is defined as:

Qαβ =

∫
(3rαrβ − δαβr2)ρdr. (A.4)

The quadrupole energy can be written as

Eq =
1

6

∑

α,β

VαβQαβ, (A.5)

since the term Vαβδαβ

∫
r2ρdr is zero from the Laplace equation.
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A.0.3 Quantum mechanical treatment

For a quantum mechanical expression we replace the charge density with the operator

ρ(op)(r) = e
∑
k

δ(r − rk), where k - proton number, and hence

Q
(op)
α,β = e

∑

k

(3rαkrβk − δαβr2
k). (A.6)

And the Hamiltonian:

HQ =
1

6

∑

α,β

VαβQ
(op)
αβ . (A.7)

The eigenstates of the nucleus are characterized by the total angular momentum

I of each state, 2I +1 values of the z component of the angular momentum, and a set

of other quantum number ς. Since we are only interested in the spatial reorientation

of the nucleus for a given nuclear energy state, we only need the matrix elements

diagonal in both I and ς:
〈
IMζ

∣∣∣Q(op)
αβ

∣∣∣ IM ′ζ
〉
.

This expression contains the matrix elements of the coordinates operators. Since

for each nucleus its location is connected to its orbital angular momentum, for exam-

ple: lX = 1
i

(
y d

dz
− z d

dy

)
, we can convert the coordinates operators to the angular

momentum operators. x, y, z refer to the principal directions of the EFG. Ix,Iy,Iz are

the operators of the total angular momentum of the nucleus: Ix =
∑

k lxk +Sxk etc...,

where lxk and Sxk are the x components of the orbital and spin angular momentum

of the k-th nucleon.

We now use the irreducible tensor operators T2M [33]. Since the term 3rαkrβk −
δαβr2

k is a linear combination of these operators, We replace the coordinates operators

with the angular momentum operators, by replacing (x + iy) with I+, (x− iy) with

I− and z with Iz, to get the T2M constructed from I+, I− and Iz.

We now use the Wigner-Eckhart theorem [75] that states:

〈IMζ |TLM | I ′M ′ζ ′〉 = C 〈Iζ |TL| I ′ζ ′〉 (A.8)
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where C is a constant.

It can be shown [33] that using this theorem we obtain:

〈
IMζ

∣∣∣∣∣e
∑

k

(3rαkrβk − δαβr2
k)

∣∣∣∣∣ IM ′ζ

〉
= C

〈
IMζ

∣∣∣∣3
(IαIβ + IβIα)

2
− δαβI2

∣∣∣∣ IM ′ζ
〉

.

(A.9)

so the Hamiltonian can be written as:

HQ =
~υq

6

[
3I2

Z − I2 + η
(
I2
X − I2

Y

)]
(A.10)

where: υq ≡ 3e2qQ
2I(2I−1)~ , eq = Vzz

and the quadrupole moment of the nucleus is: Q = 1
e

〈
I,m

∣∣∣∣
∑
k

3Z2
k − r2

k

∣∣∣∣ I,m

〉
.

For spin 3
2

the standard basis is

〈3/2| =

(
1 0 0 0

)
〈1/2| =

(
0 1 0 0

)

〈−1/2| =

(
0 0 1 0

)
〈−3/2| =

(
0 0 0 1

)
(A.11)

Î =







0
√

3
2

0 0
√

3
2

0 1 0

0 1 0
√

3
2

0 0
√

3
2

0




,




0 −i
√

3
2

0 0

i
√

3
2

0 −i 0

0 i 0 −i
√

3
2

0 0 i
√

3
2

0




,




3/2 0 0 0

0 1/2 0 0

0 0 −1/2 0

0 0 0 −3/2







(A.12)

and the matrix representation of A.10 in this basis is

HQ =
ω0~
6




3 0 η
√

3 0

0 −3 0 η
√

3

η
√

3 0 −3 0

0 η
√

3 0 3




(A.13)
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Diagonal form of the Hamiltonian

The matrix that diagonalizes HQ is

T =
1√

1 + σ2




1 0 σ 0

0 1 0 −σ

−σ 0 1 0

0 σ 0 1




(A.14)

Where ς and σ are defined as

σ , η√
3(1 + ς)

, ς ,
√

1 +
η2

3
(A.15)

And the diagonal form is

Hdiagonal
Q = THQT † =

ω0~ς
2




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1




(A.16)

We therefore conclude that our system is composed of two doublets of energy.

E1,2 = (ω0/2)(1 + η2/3)1/2 (A.17)

E3,4 = −(ω0/2)(1 + η2/3)1/2

and, 2πfNQR = ω0(1 + η2/3)−1/2 is the resonance frequency.



Appendix B

Interaction with an external time

dependent magnetic field

In this Appendix we add to the NQR Hamiltonian an interaction with an external

time dependent magnetic field. Since the reference frame of the problem is defined by

the three principal axes of the EFG tensor, orienting the coil in an arbitrary direction

of space yields a magnetic field of the form

B(t) = 2B1 cos(ωt) [sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)] (B.1)

This field defines another characteristic frequency in the system

ω1 , γB1 (B.2)
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and the Hamiltonian becomes H(t) = HQ + Ŵ (t) with

Ŵ (t) = ~γB1 · I = 2~ω1 cos(ωt) cos(θ)




3
2

0 0 0

0 1
2

0 0

0 0 −1
2

0

0 0 0 −3
2




+2~ω1 cos(ωt) sin(θ)




0
√

3
2

e−iφ 0 0
√

3
2

eiφ 0 e−iφ 0

0 eiφ 0
√

3
2

e−iφ

0 0
√

3
2

eiφ 0



(B.3)

Since we’ve transformed HQ to a diagonal form we must apply the same transfor-

mation to the perturbation part (Ŵ diagonal(t) = TŴ (t)T †), a calculation that ends

with

Ŵ diagonal(t) =
2~ω1 cos(ωt)

1 + σ2
cos(θ)




3
2
− σ2

2
0 −2σ 0

0 1
2
− 3σ2

2
0 2σ

−2σ 0 −1
2

+ 3σ2

2
0

0 2σ 0 −3
2

+ σ2

2




+
2~ω1 cos(ωt)

1 + σ2
sin(θ)




0 D∗ 0 F ∗

D 0 E∗ 0

0 E 0 D∗

F 0 D 0




(B.4)

Where D, E and F are defined as

D ,
√

3

2
eiφ

[
1− σ2 +

2√
3
σe−2iφ

]
, D0e

iλ

E , eiφ
[
1− σ

√
3e−2iφ

]

F ,
√

3

2
eiφ

[
2σ +

2√
3
σ2e−2iφ

]
(B.5)
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Since ω0

ω1
≈ 100 the diagonal elements of Eq. (B.4) are much smaller than those of

Eq. (A.16) and we omit them. Furthermore, according to the off resonance approxi-

mation we can also omit the terms with E and F since a time dependent perturbation

can not couple degenerate energy levels. Our Hamiltonian is thus reduced to

Ĥdiagonal(t) =
ω0~ς

2




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1




+

2~ω1D0 cos(ωt)

1 + σ2




0 e−iλ sin(θ) − 2σ
D0

cos(θ) 0

eiλ sin(θ) 0 0 2σ
D0

cos(θ)

− 2σ
D0

cos(θ) 0 0 e−iλ sin(θ)

0 2σ
D0

cos(θ) eiλ sin(θ) 0




By using the definitions of Eq. (B.5), (A.15) and the following new ones

a , 1

2
√

3 + η2
(η + 3, η − 3, 2η) (B.6)

A±,ax cos(φ)± iay sin(φ) , Az,az (B.7)

ε,
√

A+A− sin2(θ) + A2
z cos2(θ) (B.8)
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Ĥdiagonal(t) can be written in a more convenient way

Ĥdiagonal(t) =
ω0~ς

2




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1




+

2~ω1 cos(ωt)




0 A+ sin(θ) −Az cos(θ) 0

A− sin(θ) 0 0 Az cos(θ)

−Az cos(θ) 0 0 A+ sin(θ)

0 Az cos(θ) A− sin(θ) 0




(B.9)

Note that for η = 0, Az = 0, and the Hamiltonian becomes:

Ĥdiagonal(t)(η = 0) =
ω0~ς

2




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1




+

2~ω1 cos(ωt)




0 A+ sin(θ) 0 0

A− sin(θ) 0 0 0

0 0 0 A+ sin(θ)

0 0 A− sin(θ) 0




(B.10)

In this case when transmitting in the ẑ direction (θ = 0), there are no off-diagonal

terms left, and there will be no transitions.
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xarne orhna zeipbened xqeg xezi`

miizyegp mikilen lra ihpbn xcql

xter zpix





xarne orhna zeipbened xqeg xezi`

miizyegp mikilen lra ihpbn xcql

xwgn lr xeaig

x`ez zlawl zeyixcd ly iwlg ielin myl

diteqelitl xehwec

xter zpix

l`xyil ibelepkh oekn — oeipkhd hpql ybed

2008 xanhtq dtig g"qyz lel`





oxw zinr zkxcda dyrp xwgn lr xeaig

dwiqitl dhlewta

dcez zxkd

izenlzyda daicpd zitqkd dkinzd lr oeipkhl dcen ip`





xivwz

mipzipd ,ovnge zyegp ly mixeyin zeliknd zeinxw zeaekxz md miizyegpd lrd ikilen

mineh` ztlgd i"r zrvazn mixegd zqpkd .miperh mixeg zqpkd ici lr meniql

ozip .zipevigd dnxa mipexhwl` ly dpey xtqn ilra mixg` mineh`a mixeyinl uegn

-xneg ce`n zekenp meniq zenxa :meniqd znxa zelzk dl` mixneg lr lkzqdl

avnl xarnd zxehxtnh ,meniqd znx zilr mr .mihpbnextihp` miccean md dl` mi

ihpbn xcq xzei oi` %4 jxra ly meniq znxay cr ,ce`n xdn zcxei TN hpbnehxtihp`

lr avnl xarnd zxehxtnh .zekilen lrd driten znieqn meniq znx lrn .jex` geehl

`id xarnd zxehxtnh eay ilnihte` meniq ly dnxl cr meniqd mr dler TC jilen

.TN a dcixil mxeb ef dnxl xarn sqep meniq .zilniqkn

zeipbened xqeg ly dcicna wqer oey`xd wlgd .mipey miwlg ipyn diepa ef dcear

-icnd .Y Ba2Cu3Oy(Y BCO) dkilen lrd zaekxzd ly CuO2 - d ixeyina orhna

znxb`ica dkilen lrd df`td megza zepey meniq zenx ilra minbc xear eyrp zec

m`d driawd `id miizyegpd mikilen lrd ly megza gztnd zel`yn zg` .zef`td

lrd oepbpna igxkd wlg `ed ,el` zeaekxzn xtqna dlbzdy ,orhna zipbenedd xqeg

meniqd znxa wx eyrp Y BCO a mixeyina ditexhefi`p` ly zecicn ,meid cr .zekilen

orhna ixyt` zeipbened xqeg cecnl `id xwgnd ly dfd wlgd zxhn .zil`nihte`d

-l`d dpand oia divlxew yi m`d ze`xle ,xzei dkenp meniq znx ilra Y BCO inbca

ieqip .mbcd meniql miynynd mineh`d mewin oiae mikilen lrd mixeyind ly ipexhw

d



e xivwz

zef`t zcxtde zeipbened xqeg mi`apnd mihxe`z milcen m`d xnel epl xyt`i df

lrl miihpeelx ok` md ,meniql miynynd mineh`d z` oeayga `iadl ilan mixeyina

.`l e` ddeab dxehxtnha zekilen

-xceew zihpbn dcedze ,(NMR) zipirxb zihpbn dcedz ly miieqip eprvia ef dxhnl

znxeb reaw ipevig ihpbn dcy zlrtd NMR zcicna .Y BCO inbca ,(NQR) zilete

avipa qppefxd xcza onfa ielz ihpbn dcy zlrtd .zeipirxbd dibxp`d zenx oia dcxtdl

mda orhnd zebltzdy mipirxba .dibxp`d zenx oia xarn zvl`n ,reawd dcyd oeeikl

miprhnd ly ilnygd letexceewd hpnen ,2/3 oitq lra zyegpd oirxb oebk ,zixtq dpi`

ieqipa .mitqep qppefx ixcz zxivile dibxp`d zenx ly dffdl mxeb oirxbd z` miaaeqd

dibxp` zenx izy zxivil mxeb ilnygd letexceewd hpnen ,reaw ihpbn dcy oi` ,NQR

ly ilnygd dcyd ly zeipyd zexfbpd ici lr rawp dibxp`d zenx oia yxtdd .oirxbl

z` miccen ,NMR ieqipl dneca , NQR ieqipa .[EFG] oirxbd z` miaaeqd miprhnd

mxf ly miqlet zlrtd i"r zrvazn dcicnd .dibxp`d zenx oia xarnl dcedzd xcz

oeeika dcy mixveie mbcd `vnp ekezay lilql mixceyn miqletd .rf zexicza oitelig

zenx oia xarnl qppefxd zexiczl dni`zn xeciyd zexicz xy`k .lilqd ly xivd

ly mixhnxtd cg` .lilqa gznd zriaw i"r zkxrna ccnpd ,lilqa cd xvep ,dibxp`d

zitexhefi` lr cenll ozip epnny ditexhefi`p`d xhnxt `ed iletexceewd o`ipehlindd

.oirxbd aiaq orhnd xefit

ixeyind ly ipexhwl`d dpan mipiipern ep`y oeeik ,zyegpd oirxb lr ervea zecicnd

zyegpd ixz` oia xzei daeh dpgad xyt`le mexhwtqd z` hytl ick .CuO2 -d

mieeyn ip` ef dceara .63Cu zyegpd tehefi`a mixyren eid ieqipa minbcd ,mipeyd

,dycg dhiy oia mieeyn ep` .ditexhefi`p`d xhnxt zcicnl zepey zehiy yely oia

zewize zehiy izy oiae ,(ADNQR) zieef zielz ziletexceew zihpbn dcedz z`xwpd

.izxby NMR ieqipe ,Nutation zitewqexhwtq :xzei

znxa Y BCO a wx ditexhefi`p`d xhnxt z` cecnl ozip ik d`xd NMR d ieqip



f xivwz

ozip `le ylge agx dyrp NMR d ew xzei zekenpd meniqd zenxa .zil`nihte` meniq

-efi`p`d xhnxt z` ulgl ozip `l okle ,qppefxd zeiexicz z` irnyn cg ote`a reawl

.ewd jezn ditexh

zyegpd xear ,Y BCO7 a ik d`xd ADNQR d ieqipe Nutation d ieqip ly aeliyd

NMR zecicnl dni`zn ef d`vez ,itexhefi` `ed orhnd xefit mikilen lrd mixeyina

mipey mixz` xear zepey ze`vez elawzd xzei dkenp meniq znx lra mbca .zencew

xefit ik lawzd ,Y BCO7 a zniiwy efl ddf daiaqa zyegp xear .mixeyina zyegp ly

ineh`a xqeg yi day daiaqa z`vnpy zyegp xear z`f znerl .itexhefi` `ed orhnd

.CuO2 d ixeyina zeipbened xqeg epyi ,ze`xyxya meniql miynynd ovng

xqeg yi mda mixz`a wx `vnp orhna zeipbened xqeg ik zecnln miieqipd ze`vez

mikilen lrd mixeyina zef`t zcxtd zniiw m` xnelk .ze`xyxya ovng ineh` ly

dpekz zeidl dleki `l okle ,meniql miynynd ovngd ineh`a dxeyw `id ,ef zaekxza

.mnvr mixeyind ly

zef`td znxb`ica xef`a ,xzei zekenp meniq zenxa fkxzn dceard ly ipyd wlgd

aeaiq) muSR zxfra eyrp zecicnd df wlga .ihpbn xcql zeipbened i`n xarn yi eay

mipe`eind lk ly oitqdy jk ,mbcd jezl mixcgen mipe`ein ef dhiya .(oe`eind oitq ly

mbcd jeza xver oe`eindy rbxa .dnel`d ly drepzd oeeikl cebipa ,oeeik eze`a ahewn

aeaiqd xcz xy`k ,yg `edy inewnd ihpbnd dcyd aiaq divqxt rvan ely oitqd

oexhifetl jrec `ed .dipyexwin 2.2-k `ed oe`eind ly miigd onf .dcyd lceb it lr rawp

oitqd oeeika zeticra hltp oexhifetd ylgd gekd ly dixhniqd -i` awr .epixhiep ipye

xg` aewrl mixyt`ny mipexhifet i`lb xtqna swen mbcd .dkircd rbxa oe`ind ly

ihpbnd dcyd zebltzd z` xfgyl o`kne ,onfa zelzk mipe`eind ly rvennd aehiwd

`ed eze`y iniptd dcyl zipeivxetext mbca oe`eind ly aeaiqd zexicz .mbcd jeza

ihpbnextihp`d xcqd xhnxt z` cecnl ozip o`kne yg

qiqad zxehxtnha ihpbnextihp`d xcqd xhnxt z` cecnl icka muSR a epynzyd



g xivwz

xear ervazd zecicnd .∆pm ilnihte` meniqn zccnpd mixegd meniqa zelzk ,M0

dpey x lk .(CaxLa1−x)(Ba1.75−xLa0.25+x)Cu3Oy(CLBLCO) :mikilen lrd zkxrna

ihpbnd cenivd xhnxte ilniqknd TC ef zkxrna .mikilen lr ly dpey dgtyn deedn

.dgtyna dielz dpi` ∆pm a M0 ly zelzd ik ep`vn .zegtynd oia 30% a mipzyn J

bixyd ixhnxt z` cecnl zpn lr mipexhiep xefit ly zecicn eprvia jkl sqepa

ly miipan milewiya yeniy jeze ,el` zecicn jezn .meniqd znxae dgtyna zelzk

t − d lcen ly t belicd avw z`e J hpbnd cenivd xhnxtd z` jixrdl ozip bixyd

oia zilniqknd dkilen lrd xarnd zxehxtnha iepiyl ixwird xewnd ik ep`xd .J

itk ,t/J qgid oia d`eeyd .mixeyina zyegpl ovngd oia setikd zieef `id zegtynd

zaekxz xear ik zcnln ,∆pm a M0 ly zelzde ,mipexhiepd xefit zcicn jezn ulegy

.t/J lcenn dtevnl cebipa ,t/J d dielz dpi` mixegd xtqna zelzk xcqd xhnxt ef

-xehxtnhay `id zg` zexyt` .dl` ze`vezl miixyt` mixaqd xtqn mirivn ep`

il`peivxetext `edy t lra la` ,t−J d lcen i"r oezp iaihwt`d o`ipehlindd zekenp ze

dvitw ly d`vez `l `ed ihpbnd xcqd xhnxt ly qxddy `id ztqep zexyt` .J l

o`ipehlind mr zkxrnd z` x`zl jxev yie ,ihpbnextihp` rwx lr miccea mixeg ly

.mipefea zebef ly dvitw x`znd dfk ile` ,dpey


